BROADCAST AND TELEVISION EQUIPMENT

(29)

Instructions

RADIO CORPORATION OF AMERICA, Industrial Elect-onic Products

TM -27
COLOR MONITORS

EQUIPMENT LOST OR DAMAGED IN TRANSIT

When delivering the equipment to you, the truck driver or carrier's agent will present a receipt for your signature. Do not sign it until you have (a) inspected the containers for visible signs of damage and (b) counted the containers and compared with the amount shown on the shipping papers. If a shortage or if evidence of damage is noted, insist that notation to that effect be made on the shipping papers before you sign them.
Further, after receiving the equipment, unpack it and inspect thoroughly for concealed damage. If concealed damage is discovered, immediately notify the carrier, confirming the notification in writing, and secure an inspection report. This item should be unpacked and inspected for damage WITHIN 15 DAYS after receipt.
Report all shortages and damages to RCA, Broadcast and Television Department, Camden 2, N. J.
Radio Corporation of America will file all claims for loss and damage on this equipment so long as the inspection report is obtained. Disposition of the damaged item will be furnished by RCA.

replacement parts and engineering service

RCA field engineering service is available at current rates. Requests for field engineering service may be addressed to your RCA Broadcast Field Representative or the RCA Service Company, Inc., Broadcast Service Division, Camden, N. J. Telephone: WOodlawn 3-8000.
When ordering replacement parts, please give symbol, description, and stock number of each item ordered.
The part which will be supplied against an order for a replacement item may not be an exact duplicate of the original part. However, it will be a satisfactory replacement differing only in minor mechanical or electrical characteristics. Such differences will in no way impair the operation of the equipment.
The following tabulations list service parts and electron tube ordering instructions according to your geographical location.

SERVICE PARTS

| LOCATION | ORDER SERVICE PARTS FROM: |
| :--- | :--- | :--- | :--- |

ELECTRON TUBES

LOCATION	ORDER ELECTRON TUBES FROM:
Continental United States, including Alaska and Hawaii	Local RCA Tube Distributor.
Dominion of Canada	RCA Victor Company Limited, 1001 Lenoir Street, Montreal, Quebec or through your local Sales Representative or his office.
Outside of Continental United States, Alaska, Hawaii and the Dominion of Canada	```Local RCA Tube Distributor or from: Tube Department RCA International Division 30 Rockefeller Plaza New York 20, New York, U.S.A.```

RETURN OF ELECTRON TUBES

If for any reason, it is desired to return tubes, please return them through your local RCA tube distributor, RCA Victor Co. Ltd., or RCA International Div., depending on your location.

PLEASE DO NOT RETURN TUBES DIRECTLY TO RCA WITHOUT AUTHORIZATION AND SHIPPING INSTRUCTIONS.
It is important that complete information regarding each tube (including type, serial number, hours of service and reason for its return) be given.
When tubes are returned, they should be shipped to the address specified on the Return Authorization form. A copy of the Return Authorization and also a Service Report for each tube should be packed with the tubes.

LIST OF RCA REGIONAL OFFICES

Atlanta 3, Georgia 1121 Rhodes-Haverty Bldg. 134 Peachtree St. N.W. JAckson 4-7703
Dallas 35, Texas
7901 Empire Freeway
FLeetwood 2-3911

Boston 16, Mass.
Room 2301, John Hancock Bldg.
200 Berkley St.
HUbbard 2-1700
Hollywood 28, Calif.
RCA BIdg., 1560 N. Vine St. HOllywood 9-2154

420 Taylor St.
ORdway 3-8027

Chicago 54, Ill.
1186 Merchandise Mart Plaza
DElaware 7-0700

Kansas City 6, Missouri
340 Home Savings Bldg.
HArrison 1-6480

Cleveland 15, Obio
1600 Keith Bldg.
CHerry 1-3450

New York 20, New York
36 W. 49th St.
JUdson 6-3800

BROADCAST AND TELEVISION EQUIPMENT

INSTRUCTIONS

Color Monitors

TM-27C
MI-40232

TM-27R
MI-40231

IM-27AC
MI-40232-A

TM-27AR
MI-40231-A

RADIO CORPORATION OF AMERICA

 industrial electronic products, camden, N. J.
WARNING!

Operation of electronic equipment involves the use of high voltages which are dangerous to life. Operating personnel must at all times observe all safety regulations. Do not change tubes or make adjustments inside the equipment with volt age supply on. Under certain conditions dangerous potentials may exist in circuits with power controls in the off position due to charges retained by capacitors, etc. To avoid casualties, ALWAYS DISCHARGE AND GROUND CIRCUI TS PRIOR TO TOUCHING THEM.

ABOUT FIRST AID
Personnel engaged in the installation, operation and maintenance of this equipment or similar equipment are urged to become familiar with the following rules both in theory and in the practical application thereof. It is the duty of plication thereof. It is the duty of
every radioman to be prepared to give every radioman to be prepared to give
adequate First Aid and thereby prevent avoidable loss of life.

FIRST DEGREE BURN
SKIN REDDENED. Temporary treatment-Apply baking soda or Unguentine.

SECOND DEGREE BURN
SKIN BLISTERED. Temporary treatment-Apply baking soda, wet compress, white petroleum jelly, foille jelly, olive oil, or tea.

THIRD DEGREE BURN
FLESH Charred. Temporary treatment-Apply baking soda, wet compress, white petroleum jelly, or foille spray. Treat for severe shock.

> BACK PRESSURE-ARM LIFT METHOD OF ARTIFICIAL RESPIRATION (Courtesy of the American Red Cross)

1. Position of the subject (See Fig. 1) Place the subject in the face down, prone position. Bend his elbows and place the hands one upon the other. Turn his face to one side, placing the cheek upon his hands.
2. Position of the operator (See Fig. 2) Kneel on either the right or left knee at the head of the subject facing him. Place the knee at the side of the subject's head close to the forearm. Place the opposite foot near the elbow. If it is more comfortable, kneel on both knees, one on either side of the subject's head. Place your hands upon the flat of the subject's your hands upon the flat of the subject's
back in such a way that the heels lie just back in such a way that the heels lie just below a line running between the armpits. spread the fingers downward and outward.
3. Compression phase (See Fig. 3) Rock forward until the arms are approximately vertical and allow the weight of the upper part of your body to exert slow. steady. even pressure downward upon the steady. even pressure downward upon the hands. This surces air out of the lungs, Your elbows should be kept straight and
the pressure exerted almost directly downthe pressure exerted almost directly downward on the back.

FIGURE I

FIGURE 2

FIGURE 3

FIGURE 4

Figure 5

table OF CONTENTS

Page
EQUIPMENT 6
TECHNICAL SUMMARY 7
Electrical Specifications 7
Mechanical Specifications 7
TUBE COMPLEMENT 8
DIODES 8
TRANSISTOR COMPLEMENT 9
CIRCUIT DESCRIPTION 10
Video Input 10
Video Processing 10
Chrominance Section 10
Subcarrier Oscillator 11
Color Synchronization 11
Synchronism Detector ('S'" Detector) 12
Sync and Pulse Circuits 12
RGB Video Amplifiers 13
Kinescope Blanking and Failure Protection 13
Low Voltage Power Supplies 14
Tube Power Supply 14
CRT Filament Regulator 14
INSTALLATION 15
Degaussing 15
OPERATION 15
Operating Controls 15
Secondary Controls 15
ADJUSTMENTS 15
Kinescope Gun Cut-Off Adjustment 15
Color Temperature Adjustment 16
Color Hold Adjustment, 2Pl 16
Burst Gate Pulse Adjustment 16
Convergence Check 17
MAINTENANCE 17

1. Low Voltage Power Supply Adjustments 17
2. Kinescope Replacement 17
3. Red Field Purity 18
4. Complete Convergence Procedure 18
5. Adjustment of Horizontal and High Voltage System 20
6. Video Response Adjustments 21
7. Subcarrier Generator Adjustment 22
8. Adjustment of Sync Processing and Pulse Generation Circuits 22
9. Unity Chroma Calibration 23
TYPICAL SOCKET VOLTAGES 24
LIST OF PARTS 36

LIST OF ILLUSTRATIONS

Page
17" Cabineted Color Monitor, Front View 5
Sweep Response, Red Channel 21
Response of Bandpass Filter, 2 T3 22
Typical Waveforms 25
Typical Waveforms, Sync and Pulse Waves 28
Typical Waveforms, Vertical Deflection Waves 30
Typical Waveforms, Horizontal Deflection Waves 31
Color Monitor, Rear View 32
Color Monitor, Top View 33
Color Monitor, Left Side View 34
Color Monitor, Right Side View 35
Outline Dimensions, 17^{11} Cabinet Monitor 53
Outline Dimensions, $17^{\prime \prime}$ Monitor - Rear View 54
Outline Dimensions, 17" Rack-Mounted Monitor 55
Rack Mounting Installation 56
Convergence Diagram 57
Schematic Diagram, Block Diagram, Sheet lof 10 59
Schematic Diagram, Video Processing, Sheet 2 of 10 60
Schematic Diagram, Sync and Pulse Processing, Sheet 3 of 10 61
Schematic Diagram, Horizontal Deflection and High Voltage, Sheet 4 of 10 62
Schematic Diagram, Vertical Output Convergence Assembly, Sheet 5 of 10 63
Schematic Diagram, Power Supply, Sheet 6 of 10 64
Schematic Diagram, Demodulators and Sub-Carrier Oscillator, Sheet 7 of 10 65
Schematic Diagram, Subcarrier AFPC and S Detector, Sheet 8 of 10 66
Schematic Diagram, Matrix and Color Amplifiers, Sheet 9 of 10 67
Schematic Diagram, Video Amplifiers and Kinescope Circuitry, Sheet 10 of 10 68

17" Cabineted Color Monitor, Front View

EQUIPMENT

TM-27C, $17^{\prime \prime}$ Cabinet Monitor, includes the chassis, kinescope and all tubes in place, mounted in the cabinet. The front is finished in deep umber gray textured vinyl. The sides and top are finished in light gray textured vinyl. The monitor is equipped with carrying handles.

TM-27AC, $17^{\prime \prime}$ Cabinet Monitor, includes the chassis, kinescope and all tubes in place, mounted in the cabinet. The front, top and sides are finished in midnite blue textured vinyl. The monitor is equipped with carrying handles.

TM-27R, $17^{\prime \prime}$ Rack Monitor, includes the chassis, kinescope and all tubes in place, and is equipped with slides and hardware for mounting in a standard 19" relay rack. A set of mounting angles and hardware, MI-30527-G29, is included. Sides, top and carrying handles are not furnished. The front is finished in deep umber gray textured vinyl.

TM-27AR, $17^{\prime \prime}$ Rack Monitor, includes the chassis, kinescope and all tubes in place, and is equipped with slides and hardware for mounting in a standard $19^{\prime \prime}$ relay rack. A set of mounting angles and hardware, MI-30527-G29, is included. Sides, top and carrying handles are not furnished. The front is finished in aluminum vinyl.

The rack mounting installation drawing on page 56 describes the manner in which the rack mounted units may be installed in a standard relay rack.

TECHNICAL SUMMARY

ELECTRICAL SPECIFICATIONS

Input Power:	105-130 volts, $50 / 60$ cycles, 350 watts, 3 -wire line cord, 6 feet long with twist lock disconnect furnished.
	Primary Fuse: 4 amperes, 3AG slo-blo
	Power Connector: Hubbell \#7486
Input Signals:	Composite Video: 0.25 volts peak-to-peak minimum
	Non-Composite: 0.20 volts peak-to-peak minimum
	Sync: $\quad 3-8$ volts peak-to-peak
Input Impedance:	Video: High impedance bridging. Can beterminated by an internal 75 ohm load through a switch located on rear apron, parallel co-ax input connectors
	Sync: High impedance, 3-8 volts peak-to-peak, sync negative, parallel co-ax input connectors
Video Frequency Response:	Flat to 5 mc in black-and-white position. A 3.58 mc trap is automatically switched-in during color operation while frequencies above 3.58 mc are rolled off. Variable aperture correctionfrom front panel control.
Linearity:	Within 2% of picture height

MECHANICAL SPECIFICATIONS

MODEL WIDTH HEIGHT LENGTH NET WEIGHT SHIPPING WEIGHT

$17^{\prime \prime}$ Cabinet Monitor	$19^{\prime \prime}$	$21^{\prime \prime}$	$22 \frac{1^{\prime \prime}}{}$	10 L Lbs.

TUBE COMPLEMENT

SYMBOL
TYPE
$-6 \mathrm{~EB} 8$
4 V 2
4 V 3
4V2l
4V22
4 V41
4V42
5 V 1
5 V 2
5 V 3
5V4
5 V 5
5 V 6
5 V 7
5 V8
7 VI
7 V 2
7 V 3
7 V4
7 V5
8 Vl
8 V 2
$-5751 / 12 \mathrm{AX7}$
-6DJ8
-6EB8
$-575 \mathrm{l} / 12 \mathrm{AX7}$
-6EB8
-575l/ 12AX7
-6EM7
6BV8 6 FQ 7
$-6 \mathrm{DQ5}$
3A3
1V2
6 DW 4
6 BK4
6080
6080
$6 \mathrm{AU6}$
6BL8
5651 A
12AU7
17EJP22

Red Video Output
Clamp
Clamp Pulse Generator
Green Video Output
Clamp
Blue Video Output
Clamp
Vertical Discharge and Output
Horizontal AFC
Horizontal Oscillator
Horizontal Output
High Voltage Rectifier
Focus Rectifier
Damper
High Voltage Regulator
Power Supply Regulator
Power Supply Regulator
Power Supply Regulator Amplifier
Power Supply Regulator Amplifier
Voltage Reference
Blanking Mixer
Color Kinescope

DIODES

SYMBOL
2D1 to 2D4 $1 N 916$
2D5 to 2D6 V939
2 D 7 1N456
2D8 to 2D10 1N67A
3 Dl to 3D3 1N67A
4 D 1
6Dl to 6D3
7 Dl to 7 D 2
7 D 3 to 7 Dl 4
7 D50
7 D51 lN456
7 D52 IN751
7 D53 lN3253
7 D54 lN756
7 D 55 IN456
7 D56 lN751
7 D 57 1N2982A
8D1

1N1763
ED0041B
1N3196
1N1763
1N756

1N1763

TRANSISTOR COMPLEMENT

SYMBOL	TYPE	SYMBOL	TYPE
1Q1	SM1036A	2Q30	2N706
1Q2	2N2189	2Q31	2N2189
1Q3	2N706	2Q32	2N3053
1Q4 to lQ6	2N2189	2Q33	2N706
1Q7	2N706	2Q34	2N2189
1Q8	SM1036A	2Q35	2N3053
1Q9	2N706	2Q36	2N706
lQ10 to lQll	2N1303	2Q37	2N2189
Q12	2N706	2Q38	2N3053
Q13	2N2189	2Q39	2N1303
lQ14 to lQ15	2N706	2Q40	2N2189
LQ16 to lQ17	2N2189	2Q41	2N1303
Q18	2N706	2Q42 to 2Q44	2N3053
1Q19 to 1Q20	2N1303		
		3Q1	SM0082
2Q1	2N2189	3 Q 2 to 3 Q 6	2N1303
2Q2 to 2Q4	2N3053	3Q7	2N711A
2Q5 to 2Q6	2N706	3Q8	TI 485
2Q7	2N1302	3 Q 9 to 3Q13	2N1303
2Q8	2N1303	3Q14	2N1302
2Q9	2N706	3Q15	2N1303
2Q10 to 2Q1l	2N1303	3Q16	2N1302
2Q12	2N1302	3 Q 17 to 3Q22	2N1303
2Q13	2N3053	3Q23	2N711A
2Q14 to 2Q15	2N1302	3Q24	2N1303
2Q16 to 2Q17	2N1303		
2Q18	2N3053	5Q1 to 5Q2	SM0082
2Q19	2N1303	5Q3	2N1303
2Q20	2N706		
2Q21	2N2189	7Q50	2N456A
2Q22 to 2Q23	2N1302	7Q5 1	2N1372
2Q24	2N706	7Q52 to 7Q54	2N1303
2Q25	2N2189	7Q55	2N456A
2Q26 to 2Q27	2N 1302	7Q56	2N1372
2Q28	2N706	7Q57 to 7Q59	2N1303
2Q29	2N2189		

COLOR MONITOR

CIRCUIT DESCRIPTION

VIDEO INPUT

The composite color signal from 1 J 1 or 1 J 2 is fed to a feedback-pair amplifier, $1 Q 1$ and 1 Q 2 . The coil assembly, lll, together with the input and stray capacitances, behaves as an m derived filter, which virtually eliminates reflections on the video cable due to insertion of the monitor. The amplifier provides a high input and a low output impedance to couple the signal through a cable to the CONTRAST control, lPl, without significant high frequency attenuation.

VIDEO PROCESSING

After the CONTRAST control, point AZ, the composite signal is amplified by another feedback pair, $1 Q 3$ and $1 Q 4$, and the signal for the chroma section is taken off at point AJ. A double emitter follower isolates this point from the following backporch clamp so that the subcarrier reference burst will not be affected. The network, lR18 and lC8, produces a deliberate roll-off of high frequency video components $(3.6 \mathrm{mc})$, in order to prevent the possibility that the absolute black level clipper might clip-off portions of high chrominance subcarrier signals which extend beyond black level. (The desired flat frequency response is restored after the clipper and clamp circuits by the high peaker capacitor, 1C16.) The backporch clamp, $1 Q 8,1 Q 9,1 Q 11$ and $1 Q 12$, clamps the collector of $1 Q 9$ to ground during backporch time. The emitter of $1 Q 9$ contains a 3.58 mc trap which attenuates the video response at 3.58 mc during color transmissions, which prevents "set up" on burstand also removes 3.58 mc from the ' Y " channel. During monochrome transmissions, there will be no color-kill voltage (point $A Y=$ zero volts), and transistor $1 Q 10$ shorts-out the trap, making the video response flat to 5.5 mc . Note that this circuit strips-off sync and any components which are beyond black level, thus leaving a reference black level "shelf"during horizontal blanking time.

A locally generated "brightness pulse", occurring during horizontal blanking time, is added to the video signal in the differential amplifier, $1 Q 14$ and $1 Q 15$. The amplitude and polarity of this "brightness pulse" is controlled by lP3, the front panel control marked BRIGHTNESS. Under nor mal conditions, the BRIGHTNESS control will be set near the center of its range, and the amplitude of the "brightness pulse" will be near zero.

A feedback pair, $1 Q 7$ and $1 Q 13$, drives the video delay line, where the video signal is delayed by approximately .82 microsecond to match the delay in the chroma circuits, due to their limited bandwidth. Following the 'brightness pulse" addition is the aperture corrector, which makes the picture more 'crisp" by adding a small amount of pre-shoot and overshoot to transitions in the signal. The aperture corrector differs from ordinary 'high peakers' in that it boosts high frequencies without affecting phase. A feedback pair, $1 Q 17$ and $1 Q 18$, with low output impedance couples the processed luminance signal to the matrix.

CHROMINANCE SECTION

The composite video signal from point AJ is fed to the CHROMA control, 2P2, on the front panel, The chroma level is adjustable with 2 P 2 , or can be switched to the UNITY CHROMA (pre-set) position by turning 2 P 2 completely counterclockwise until the switch on 2 P 2 operates. The pre-set chroma level is adjusted at the factory for unity chroma with locking potentiometer 2P3. The signal is fed to an amplifier, $2 Q 1$, and bandpass filter, $2 T 3$, having a passband of approximately 1.8 mc , centered about the color subcarrier frequency. This chrominance signalis applied to a terminated precision delay line having a time delay equivalent to 90° at the subcarrier frequency: thus, no quadrature adjustments are needed. The signal from the input of this line is fed to the

R-Y demodulator, and the signal from the output end of the line is fed to the B-Y demodulator Reference subcarrier signal at high level (25 volts) is fed to both demodulators, 180° out of phase by balanced bifilar transformer 2T1. Matched high-speed diodes and balanced structure insure accurate decoding. Low-pass filters remove the subcarrier in the demodulated R-Y and B-Y signals before they are further amplified. The R-Y amplifier is a feedback pair, $2 Q 20$ and $2 Q 21$. Its gain is determined by the 1% resistors, 2R75 and 2R76. The B-Y amplifier, 2 Q24 and 2Q25, is similar, except for a higher gain. Following the amplifiers are the R-Y and B-Y gates, 2Q22 and 2 Q26. The gates function as the color killers, being turned on and off by the color-kill voltage at point K (plus 14 V for color, zero for monochrome). Emitter followers, 2 Q 23 and 2Q27, after the gates, provide low impedance sources for driving the matrix. The R-Y and B-Y signals are matrixed directly with the processed Y signal to produce the RED and BLUE video signals. They are also matrixed by 2 R 93 and 2 R 94 to produce a G-Y signal, which after amplification and inversion is matrixed with the Y signal to produce the GREEN video information. There are no adjustments in the matrix section. Due to large amounts of negative feedback, the matrix accuracy is independent of transistor characteristics and is determined by the 1% precision resistors. The level of the RED video signal is fixed, while the level of the BLUE and GREEN signals may be changed with 2P4 and 2P5, respectively, to adjust the color temperature of the displayed picture. The matrix is followed by two stages of amplification in each video channel. The - 15 V supply voltage to the first stage is removed when the SET-UP-OPERATE switch, $8 S W 4$, is placed in the SET-UP position. This removes video and collapses vertical scan to permit accurate setting of the three screen adjustments for gun cut-off matching. The final video amplifiers and clamps are vacuum tubes because transistors cannot easily be protected from high voltage arc-back in the kinescope.

SUBCARRIER OSCILLATOR

$2 Q 5$ is the crystal controlled 3.58 mc subcarrier oscillator. Its frequency is varied with two varactor diodes, 2 D 5 and 2 D 6 , in the crystal circuit. The varactor diodes change their capacity with the DC voltage applied at point AS. A push-pull amplifier, $2 Q 3$ and $2 Q 4$, increases the subcarrier to a higher voltage for the diode chroma demodulators. The two demodulators load the amplified subcarrier on opposite peaks, 180° out of phase, for greater demodulation accuracy.

COLOR SYNCHR ONIZATION

The method used in this monitor to phase-lock the local subcarrier oscillator to the reference burst on the video signal is rather unusual. It consists of sampling the demodulated $R-Y$ signal during burst time and developing an oscillator control voltage from this information. Since the transmitted reference burst is at $-\mathrm{B}-\mathrm{Y}$, or 180°, it is in quadrature with $\mathrm{R}-\mathrm{Y}$ at 90°, and the burst pulse in the demodulated R-Y signal will be at a null point. If the local subcarrier oscillator leads or lags the reference burst, a negative or positive signal will be developed which can be used to correct the oscillator.

This system has several advantages over the conventional circuitry using separate channels for chrominance and burst-color sync: (1) Since chrominance and burst signals passthrough the same amplifiers and demodulator, the troublesome phase-drift problem is avoided; (2) The AFPCsystem handles only pulses instead of 3.58 mc subcarrier signals, again avoiding phase-shift problems; (3) The system is well adapted to transistorization, which improves reliability.

The $R-Y$ signal at point T is amplified by a feedback pair, $2 Q 6$ and $2 Q 8.2 Q 7$ is a shunt gate, which is heavily saturated and shunts all signals to ground. During burst time, $2 Q 7$ is turned off by the burst key pulse and lets burst information pass to the next amplifier. There, after amplification by $2 Q 9$ and $2 Q 11$, it is clamped during burst time by $2 Q 10$. This increases the average DC value of any information and makes it easier to filter. $2 Q 13$ and 2Q4lare a high-input-impedance DC amplifier. The COLOR HOLD control, 2Pl, adds a DC voltage to the signal, setting the free-running frequency of the subcarrier oscillator in the absence of any signal. It should be set
to give the same DC voltage at the collector of $2 Q 41$, with no signal, as there is when the oscillator is locked to a signal. After the DC amplifier, the signal is filtered by $2 \mathrm{C} 28,2 \mathrm{C} 31$ and 2 R 158 , which determine the AFC loop cut-off frequency and damping. When the oscillator is not locked to a color signal, $2 Q 12$ is off, and 2 R159 is in series with the filter, increasing the pull-in range and speed of the AFC loop. After pull-in occurs, the color-kill voltage appears at point K and saturates 2Q12, shorting-out 2R159.

The hue of the decoded signal should automatically be correct. It is possible to change the hue, however, by matrixing-in a positive or negative amount of $B-Y$ into the $R-Y$ signal to be sampled, causing the local oscillator to lock-in a different phase relative to the reference burst. This is done with the HUE control. In its mid-position, nothing is added to the R-Y signal, but as the HUE control is turned away from center, positive or negative $B-Y$ is added to the $R-Y$ signal at point T, changing the phase of the subcarrier oscillator. $2 Q 40$ produces $B-Y$ and $-B-Y$ across the HUE control.

SYNCHRONISM DETECTOR ('S'S DETECTOR)

The 'S" or synchronism detector produces a color-kill voltage only after a color signal has lockedin the local subcarrier oscillator, which is a reliable indication of the presence of color program. It does this by sensing the presence of a demodulated reference burst in the B-Y signal during burst time.

The circuits are similar to those in the subcarrier AFPC. $2 Q 15$ is a shunt transistor which is opened by the burst key pulse during burst time. $2 Q 16$ and $2 Q 39$ amplify any signals, which are then clamped at $2 Q 17$ with a burst key pulse. $2 R 63$ and $2 C 38$ filter any DC from the clamp and remove noise during monochrome transmissions. A two-stage DC amplifier amplifies any small DC voltage from the clamp. 2R 162 gives the DC amplifier a latching feature, causing the output voltage to be either fully on or off. For monochrome signals, the output will be zero volts; for color signals, when a demodulated burst is present, the output will go to plus 14 volts.

The color-kill voltage is used to open the R-Y and B-Y gates, change the two-mode filter in the subcarrier AFPC circuit, and to switch-in the 3.58 mc filter in the video processing circuit.

SYNC AND PULSE CIRCUITS

The monitor can use either internal or external sync, and switching for this may be done locally or remotely by grounding point M , which is also connected to 3 J 3 . The sync switcher consists of $3 Q 4$ and $3 Q 5$, a differential amplifier, and $3 Q 2$ and $3 Q 3$, two series gates. The gates are controlled by the collector voltages of the differential amplifier sothat only one can be ON at a time. Depend ing on whether or not point M is grounded, either video or external sync is fed tothe sync stripper. A high impedance input for externalsync at 3 Jl and 3 J 2 is provided by emitter follower 3 Ql on the video input board. The output of the sync switcher is coupled to the sync stripper through an emitter follower. The sync stripper consists of $3 Q 7$ and $3 Q 23$ operating in parallel, one responding to fast variations and one to slower variations in the signal for increased immunity against hum, noise and transients. The combined output of $3 Q 7$ and $3 Q 23$ is again clipped by $3 Q 8$.

The sync chain effectively regenerates "horizontal drive" and "vertical drive" pulses in order to eliminate the "sync hook", or bending of vertical lines in the picture, which is inherent in conventional horizontal AFC systems, and to insure correct interlace.

Horizontal drive is regenerated by: (1) Differentiating all pulses sothat regular horizontal pulses and equalizing pulses are of the same duration, (2) Gating-out the unwanted odd equalizing pulses, and (3) Stretching and shaping the pulses to provide a steady stream of identical 'horizontal drive" signals.

Vertical drive is regenerated by applying a locally generated 31.5 KC signal to one input of an "AND" gate, and the composite sync signal to the other input. Coincidence occurs only during the six broad vertical sync pulses; thus a definite, accurately-timed, vertical trigger pulse is obtained which insures accurate interlace.

The circuit functions as follows: Differentiated sync from point AH is amplified by 3 Qlo. 3 Qll is a gate in the emitter circuit of 3 Q10; $3 Q 12$ clips the pulse from $3 Q 10$ after stretching by the shunt capacitor, 3 Cl0. 3 Q13 is an emitter follower which couples-out the horizontal drive pulses to the rest of the circuits. $3 Q 14$ excites a 15.750 KC tuned circuit, 3 Ll and 3 Cl 2 , with the horizontal drive pulses sothat a 15.750 KC sine wave appears across it. The positive halves of the sine wave occur during equalizer time and turn-off gate 3 Qll to prevent equalizing pulses from passing through 3 Q10. Negative sync and full-wave rectified sine wave from the tuned circuit are applied to 3 Q15, which then conducts only in the middle of the six verticalsync pulses. Its output is clipped by 3 Q16 and fed to the vertical oscillator.

The brightness pulse is generated in $3 Q 17$ by lengthening the horizontal drive pulse and clipping in 3Q18. 3P2 adjusts its length.

The burst keying pulse, which occurs during backporchtime, is produced by gating horizontaldrive and the brightness pulse in 3 Q2l so that only the difference appears as an output. 3 Q24 provides noise immunity by shorting all signals and noise to ground, except during flyback time. 3Q22 provides a pulse of opposite polarity.

The vertical oscillator is a multivibrator, consisting of $5 Q 1$ and $5 Q 2$. Its free-running rate is controlled by 5P8, the VERTICAL HOLD control. The oscillator is triggered by vertical drive from the gating circuit.

RGB VIDEO AMPLIFIERS

The final three-video amplifier for RED, GREEN and BLUE signals are identical and employ pentode vacuum tubes. A 'backporch' type keyed clamp is used, each channel using a 12AX7 dualtriode tube as error detector and rectifier. During backporch time, a positive pulse, having a peak voltage adjustable (4 Pl) from 160 to 180 volts, is applied to the grid of one-half of the $12 \mathrm{AX7}$. The cathode is tied to the output of the final video amplifier. Error pulses from the plate of this tube are passed through the rectifier to the grid of the pentode amplifier. The circuit acts to maintain the black level of the output amplifiers at a level determined by the setting of 4 Pl .

The backporch keying pulses are derived from the flyback system, in order to prevent abnormal operation of the picture tube in the absence of input sync signals. Failure protection is provided by the large cathode resistors in the pentode amplifiers.

KINESCOPE BLANKING AND FAILURE PROTECTION

Horizontal and vertical retrace blanking is included to prevent visible vertical striations due to colorburstsignal and vertical retracelines. Horizontal and vertical blanking pulses are generated in the two halves of 8 Vl , a dual-triodetube. Each grid is fed with large amplitude positive retrace pulses and is grid-leak biased. Negative blanking pulses are produced in the plate circuit and DC coupled to the kinescope grids. The kinescope grid voltage is clamped to a fixed voltage during trace time by diode 8Dl to eliminate picture shading and stray signals.

In event of failure of either scanning system, 8 Vl will conduct and reduce the beam current of the kinescope to a safe value.

LOW VOLTAGE POWER SUPPLIES

The plus 15 V and minus 15 V supplies are identical; therefore, only the circuit of one will be described. In the -15 V supply, the pass transistor, 7 Q 50 , is connected to the chassis as a heat sink; the rest of the regulator circuitry is on a board. $7 Q 51$ is an emitter follower current amplifier, 7Q52 a common emitter amplifier, and 7Q53 and 7Q54 a differential amplifier which compares the output voltage with the voltage of reference diode 7 D 52 . Any change in the output voltage causes a current change through the amplifier transistors to the pass transistor so that the voltage-drop across it changes in such a way to keep the output voltage constant.

The low voltage supplies are protected against momentary short-circuits by current limiting Diodes 7 D 53 and 7D57 protect the plus 15 V and minus 15 V regulators from being shorted into each other. 7 D 57 , an 18 V Zener diode, also protects the transistor circuits from having high voltage accidentally shorted into them.

TUBE POWER SUPPLY

Power for the vacuum tube portion of the monitor is furnished by two regulated power supplies. One delivers 200 volts DC at about 150 ma . for the video amplifier, and the other delivers 395 volts DC at 300 ma .

The master reference voltage is obtained from a type 5651A high-stability glow tube. A portion of the output from the 200 volt supply is compared with this reference voltage in differential amplifier 7 V 4 and controls the voltage-drop across 7 V 2 B . The voltage is adjusted to exactly 200 volts by 7 Pl, a locking potentiometer. The output of the 200 volt supply is used as the reference voltage for the 395 volt supply. Consequently, adjustment of the 200 volt system determines the output voltage of the 395 volt supply, and no separate adjustment is needed.

CRT FILAMENT REGULATOR

The picture tube heater voltage is regulated by an "Amperite" barretter tube. This is essentially a slow-acting constant current device which acts to maintain a constant heater temperature and reduces long-term drift of color temperature and convergence, and incidentally increases life expectancy of the picture tube.

INSTALLATION

The monitor is shipped with all tubes and kinescope in place and should operate when power and input signals are applied. CAUTION: Note that the monitor will NOT operate unless a video input signal is supplied. Frequently, parts of the monitor become magnetized during shipment, producing an impure field and/or poor convergence. Before attempting to adjust and set up the monitor, it should be degaussed.

DEGA USSING

The RCA Type \#205Wl, or similar degaussing coil, is recommended. Connect the degaussing coil to 117 volt AC line and hold the coil in front of the picturetube about one inch away. Move the coil slowly in a circular motion in a plane parallel to the front of the monitor for a few seconds. Then slowly back away from the monitor several feet. Turn off the degaussing coil. This will usually clear up any purity problems. Feed the monitor with a grating "crosshatch" pattern and observe center convergence. If convergence is not correct, adjust the permanent magnets on the picture tube neck assemblies, as described in paragraph 4.6.11. Normally, this is all the adjustment that will be required. In the event that the placement of components on the picture tube neck has been disturbed due to rough handling, it is best to go through the entire setup procedure, as described in the Maintenance section under Kinescope Replacement.

OPERATION

OPERATING CONTROLS

Operating controls on the front panelare: (1) POWER ON/OFF switch, (2) BRIGHTNESS, (3) CONTRAST, and (4) CHROMA. When the CHROMA control is rotated fully counterclockwise, a snap switch operates, switching the monitor to a PRE-SET "unity chroma" position.

SECONDARY CONTROLS

Behind the trap door below the picture tube are located the usual television controls for Horizontal and Vertical HOLD, HEIGHT, LINearity, CENTering, FOCUS, etc. The color setup adjustments are also conveniently located here. The COLOR HOLD and "Unity Chroma" calibration adjustments are locking screwdriver-type potentiometers to prevent accidental operation.

The convergence adjustments are located behind the small trap door above the picture tube.

ADJUSTMENTS

In addition to the controls accessible from the front panel, certain adjustments, such as peaking coils, tuned circuits and power supply voltage adjustments, are located inside the monitor. Since these do not normally require adjustment and since their adjustment does require test equipment, such as meters, sweep generators, etc., the procedures for making these adjustments aredescribed in the maintenance and repair section of this book.

Feed the monitor with video signal and allow to 'warm up'thoroughly. Make the usualmonochrome television adjustments of brightness, contrast, horizontal and vertical hold, linearity and focus. Feed the monitor with a grating pattern and observe purity and convergence. If unsatisfactory, correct, following procedure described in the Maintenance section.

KINESCOPE GUN CUT-OFF ADJUSTMENT

Apply bar test pattern or other video signal. Turn COLOR-MONOCHROME switch to MONOCHROME position and OPERATE-SET UP switch to SET UP position. This causes vertical scanning to collapse and feeds "black level" signal to the kinescope.

Turn off BLUE and GREEN screens and set RED screen adjustment, 8 P 3 , at the point where the red line is just barely visible.

Turn off RED screen and turn on BLUE screen. Adjust BLUE screen, 8 Pl , until the blue line is just barely visible.

Turn off BLUE screen and turn on GREEN screen. Adjust GREEN screen, 8P2, until the green line is just barely visible.

Turn on all three screens and restore OPERATE-SET UP switch to OPERATE position.

COLOR TEMPERATURE ADJUSTMENT

Advance CONTRAST control to produce a normal brightness, black-and-white picture. Adjust GREEN GAIN, 2P4, and BLUE GAIN, 2P5, controls to produce the desired color temperature white. Satisfactory adjustment can be obtained by subjective judgment. For greater accuracy, a large-area lighted screen of about 50 -foot lamberts at the desired color temperature (usually $9300^{\circ} \mathrm{K}$) should be used as a reference for visual comparisons.

Note that it is usually more important to "match" all the monitors in a particular control room, so that they "look alike", than it is to observe any particular color temperature.

If gun cut-off adjustments were made accurately, grey scale will track automatically.

COLOR HOLD ADJUSTMENT, 2P1
Adjust the COLOR HOLD control, 2Pl; until the subcarrier oscillator locks to the signal. Measure the $D C$ voltage at the collector of $2 Q 41$, or point $A S$, and carefully note the exact voltage reading. Turn CHROMA control to minimum chroma (counterclockwise just before switch operates) in order to cause the oscillator to drop out of sync. Readjust 2 Pl to give the same reading as obtained above. Lock down 2Pl.

BURST GATE PULSE ADJUSTMENT

The leading edge timing of the burst gate pulse is adjusted by 3 Pl and the trailing edge of 3 P 2 . Both are locking potentiometers, located on circuit board 162037 on the righthand chassis.

Connect one probe of a dual trace scope to terminal AJ to view the burst, and the other probe to terminal $A G$ to view the gate pulse. A negative external trigger pulse for the scope is available at terminal BL or Z .

Adjust 3Pl to placethe leading edge of the burst gate ahead of the burst approximately at the trailing edge of sync.

Adjust 3 P 2 to place the trailing edge of the burst gate pulse near the end of burst where it effectively cuts off the last cycle of burst.

Alternatively, the trailing edge of the pulse may be adjusted to fall behind the end of burst and before the end of blanking. In this case, the monitor may display a small hue shift, if a faulty encoder is introducing spurious burst keying transients into the signal.

CONVERGENCE CHECK

Apply composite sync and crosshatch, or grating signal. Set BRIGHTNESS and CONTRAST controls so that brightness of crosshatch lines is low enough to prevent spot blooming. Set size switch to WIDE position.

Starting at the upper lefthand corner, adjust each convergence control in order, working from left to right. Refer to convergence chart and procedure.
(NOTE: It is notnecessary to gothrough the entire procedure to make minor adjustments. Simply refer to the convergence diagram and "touch up" the indicated adjustments as needed.)

MAINTENANCE

THE VOLTAGES EMPLOYED IN THIS EQUIPMENT ARE SUFFICIENTLY HIGH TO ENDANGER LIFE. MAKE CERTAIN POWER IS OFF AND CAPACITORS ARE DISCHARGED BEFORE TOUCHING ANY COMPONENT.

1. LOW VOLTAGE POWER SUPPLY ADJUSTMENTS

The low voltage power supplies will not normally require adjustment. These adjustments must not be disturbed unless proper equipment is available with which to test them. The performance of the monitor is critically dependent on these voltages. If these voltages are readjusted, the entire monitor must be readjusted.

If the power supplies must be readjusted, due to replacement of critical components or other reasons, use meters of 1% accuracy.

Connect the meter between chassis ground and plus 15 volt terminal. Adjust 7 P3 for 15 volts. Connect the meter between chassis ground and minus 15 volts. Adjust 7 P2 for 15 volts. Connect the meter between chassis ground and test point 7 J 3 , and adjust for 395 volts.

2. KINESCOPE REPLACEMENT

Remove old picture tube as follows:
2.1 Remove dress-front panel by taking out screws accessible from the rear of the front panel.
2.2 Remove the $1 / 4-20$ screws from the tube strap, disconnect the socket and $H . V$. cap, and remove the yoke and magnet assemblies. Withdraw the kinescope from the front.
2.3 Install the new kinescope in reverse order. Note that the new kinescope must first be wrapped with two turns of $2^{\prime \prime}$ wide adhesive tape, like the original tube. Take care to insurethat the "screen" is positioned tofit the mask and that the kinescope neck is level and parallel with the sides of the chassis. Make sure that the ground spring which grounds the outside aquadag coating of the picture tube is in place.
2.4 Place the deflection yoke about $1 / 4$ inch back from the maximum possible forward position. Place the convergence yoke over the pole pieces. Place the blue lateral magnet assembly over the pole pieces and then rotate it about 75° clockwise as viewed from the neck of the kinescope.

Turn on the monitor and allow it to warm up.

3. RED FIELD PURITY

3.1 Turn off BLUE and GREEN screens, and advance the BRIGHTNESS control to produce a raster of medium brightness.
3.2 Slide the deflection yoke back on the kinescope neck until the rear of the yoke cover almost touches the convergence assembly.
3.3 Rotate the purity magnet assembly and/or spread tabs as needed to produce purest red field in the center area of the screen.
3.4 Slide the deflection yoke forward to produce best edge purity.
3.5 Be sure that the yoke is rotated so that scanning lines are "level". Tighten the yoke clamp.

4. COMPLETE CONVERGENCE PROCEDURE

4.1 Apply composite sync and crosshatch, or grating signal. Set BRIGHTNESS and CONTRAST controls so that brightness of crosshatch lines is low enough to prevent spot blooming. Set size switch to WIDE position.
4.2 Starting at the upper lefthand corner, adjust each convergence control in order, working from left to right. Refer to convergence chart and procedure.
(NOTE: It is not necessary to go through the entire procedure to make minor adjustments. Simply refer to the convergence diagram and 'touch up' the indicated adjustments as needed.)
4.3 Pre-set the $" R, G$ and $B^{\prime \prime}$ DC position controls, 6Pl1, 6P8 and 6P13, at the center of their ranges.
4.4 Converge the center of the screen by adjusting the four permanent magnets on the neck of the picture tube. NOTE: In case that it is found necessary to fully withdraw any magnet to approach convergence, the holder can be rotated 180° (not end-for-end) and reinserted for additional range.

4.5 Vertical Convergence

4.5.1 Turn off BLUE beam, 8SW3.

Adjust Vertical R/G Amplitude, 6P9, to converge vertical center lines at the bottom of the screen.
4.5.2 Adjust Vertical R/G Tilt control, 6P5, to converge vertical center lines at the top of the screen.
4.5.3 Adjust Vertical R/G Differential Amplitude control, 6P2, to converge horizontal lines at the bottom of the screen.
4.5.4 Adjust Vertical R/G Differential Tilt control, 6Pl, to converge horizontal lines at the top center of the screen.
4.5.5 Turn on BLUE beam.
Adjust Vertical BLUE Tílt control, 6P6, to produce equal displacement (convergence error) of top and bottom grating lines.
4.5.6 Adjust Vertical BLUE Amplitude control, 6P10, to converge top and bottom horizontal lines. Readjust BLUE centering magnet, if necessary, to converge the center of the screen. Repeat steps 4.5 .5 and 4.5.6. Repeat step 4.4 and steps 4.5 .1 through 4.5 .6 of Vertical Convergence, if needed, until best convergence is obtained along the center vertical axis of the screen.

4.6 Horizontal Convergence

4.6.1 Turn off BLUE beam.
Adjust Horizontal R/G Amplitude, 6L2, to converge vertical lines at the right side of the screen.
4.6.2 Adjust Horizontal R/G Differential, 6L3, to converge horizontal lines at the right side of the screen.
4.6.3 Turn on BLUE beam.
Adjust Horizontal BLUE Right, 6Tl, to converge horizontal center lines at the right side of the screen.
4.6.4 Turn off BLUE beam.
Adjust Horizontal R/G Tilt, 6P4, to converge vertical lines at the left side of the screen.
4.6.5 Adjust Horizontal R/G Differential Tilt, 6P3, to converge horizontal lines at the left side of the screen. Repeat steps 4.6 .4 and 4.6 .5 , if needed.
4.6.6 Turn on BLUE beam.
Adjust Horizontal BLUE Left, 6P7, to converge center horizontal lines at the left side of the screen.
4.6.7 Adjust BLUE DC Position control, 6P13, and RED/GREEN Differential DC Position control, 6P8, for best convergence of horizontal lines at the center of the screen.
4.6.8 Adjust RED/GREEN DC Position control, 6Pll, for best convergence of vertical lines at the center of the screen.
4.6.9 Turn size switch, 5SWl, to UNDERSCAN position.
Converge the center of the screen with R/G UNDERSCAN Position control, 6P12, and BLUE UNDERSCAN Position control, 6Pl4.
4.6.10 Adjust Horizontal UNDERSCAN control, 6Ll, for best over-all convergence along the horizontal axis of the tube.
4.6.11 If at any point during the convergence procedure a control does not seem to have the proper effect or has insufficient range of adjustment, the trouble is probably due to incorrect placement of the components on the kinescope neck. Trysliding the convergence yoke fore-and-aft and/or rotating it slightly. Similarly, reposition the blue lateral magnet assembly. After moving components, readjust purity and repeat convergence procedure.

5. ADJUSTMENT OF HORIZONTAL AND HIGH VOLTAGE SYSTEM

5.1 Horizontal Oscillator Adjustment

Temporarily short-circuit the sync signal by placing a jumper between pin 3 of $5 \mathrm{~V} 2 / 6 \mathrm{BV} 8$ and chassis ground. Also short-circuit the "sine wave coil" by placing a jumper from pin 8 of $5 \mathrm{~V} 3 / 6 \mathrm{FQ} 7$ to chassis ground. Adjust Horizontal HOLD control, 5P7, for correct horizontal oscillator frequency as evidenced by the picture being near synchronism. If this condition is not obtained with the Horizontal HOLD control, adjust core 5 T 2 A to obtain correct frequency.

Remove the temporary jumper from pin 8 of $5 \mathrm{~V} 3 / 6 \mathrm{FQ} 7$ and adjust core 5 T 2 B to produce correct frequency. Remove the jumper from pin 3 of $5 \mathrm{~V} 2 / 6 \mathrm{BV} 8$.
5.2 This monitor is designed to operate with an ultor voltage of 23 KV design center. This voltage is arbitrary. It will operate satisfactorily at any voltage from approximately 20 to 25 KV . The technician may accept any voltage between 20 and 25 KV which gives satisfactory operation.
5.3 Remove the high voltage cage cover. Set the UNDERSCAN switch to WIDE position. Hold the scope probe near (3 or 4 inches away) the flyback transformer and adjust the scope to display one or two of the horizontal pulses. Observe the sine wave r inging between retrace pulses. Adjust the width coil, 5 Ll on rear, to produce minimum amplitude ringing.
5.4 Measure the high voltage. An electrostatic voltmeter, such as Sensitive Research Model ERSH, is preferred. Set the high voltage to 23 KV by means of 5 P 6 .
5.5 Observe the picture at low or medium brightness. The picture width should be nearly correct, i.e., slightly overscanned. If the width is not near normal, check the adjustment of the $\mathrm{B}+, 395$ volt power supply, and the deflection tubes, $5 \mathrm{~V} 4 / 6 \mathrm{DQ} 5,5 \mathrm{~V} 3 / 6 \mathrm{FQ} 7$ and $5 \mathrm{V7} / 6 \mathrm{DW} 4$.

If necessary, adjust the width coil to produce the desired width.
5.6 Check the efficiency and high voltage system performance by measuring currents as follows:
5.6.1 To measure I_{k} of $5 \mathrm{~V} 4 / 6 \mathrm{DQ} 5$, use Simpson Model 260, Series III, meter (or other meter having 50 microampere full-scale and 5000 ohm total resistance). Set the meter to read 50 microampere full-scale, and connect to J501A and J50lB. When thus connected, full-scale deflection of the meter represents 500 milliamperes of cathode current in the type 6DQ5 tube.
5.6.2 Adjust the horizontal linearity/efficiency coil, 5L2, for minimum currentreading, which should be about 215 ma . Now advance this screw clockwise slightly until adequate high voltage performance is obtained. In no case allow this current to exceed 250 ma .
5.6.3 The available picture tube beam current is measured indirectly by turning the picture tube beam current off (with BRIGHTNESS and CONTRAST controls) and measuring the cathode current of the shunt regulator tube, $5 \mathrm{~V} 8 / 6 \mathrm{BK} 4$.
5.6.4 To measure this current, use a Simpson Model 260 , Series III, meter or equal. Set the meter to read 50 microampere full-scale, and connect to J502A and J502B. Full-scale deflection of the meter indicates 2.5 ma . For 23 KV of ultor voltage, the meter should read at least 800 microamperes. With new vacuum tubes and with the set at normal temperature, the reading will typically be about 1.2 milliamperes.
5.7 Throw the size switch to UNDERSCAN position. Adjust coil 5 L 3 (on front of H.V. cage) for desired width. The underscan width should be as large as possible while still showing corners. Picture quality will deteriorate if the raster is smaller than necessary.

6. VIDEO RESPONSE ADJUSTMENTS

6.1 Feed the monitor with square-wave signal with repetition rate from 15 KC to 100 KC . Connect the scope to point BK (top end of CONTRAST control). Adjust 1 Cl for best square-wave response.
6.2 Unsolder the co-ax cable from terminal U on circuit board 162039 (matrix). Connect a video sweep generator between terminal U and ground. Connect low capacitance scope probe to the red kinescope cathode lead, pin 8 of 4 V 2 . Set up the scope and sweep generator to display a bandwidth of about 8 or 10 mc . Adjust 4 Ll and 4 L 2 for flattest res ponse curve. See figure below. Move the scope probe to the green kinescope cathode lead, pin 8 of 4 V 22 , and similarly adjust 4 L 21 and 4 L 22 . Move the scope probe to the blue kinescope cathode lead, pin 8 of 4 V 42 , and similarly adjust 4 L 41 and 4 L 42 . Restore the co-ax connection to terminal U.

Sweep Response, Red Channel

6.3 Unsolder the input lead to terminal AN on circuit board 162042. Feed the sweep generator into terminal AN and ground. Connect the scope probe to delay line 2DLl (junction of 2 C 5 and 2R9). Adjust both tuning cores of 2 T 3 to produce a flat bandpass response symmetrical about 3.6 mc , as shown in the following figure. Note that a "birdie" beat marker is visible at 3.6 mc due to the local subcarrier signal. Restore the connection to terminal AN.

6.4 Feed the monitor with a color bar signal. Connect the scope probe to terminal U and adjust the scope to display one horizontal line. Observe the residual 3.6 mc "fuzz" on saturated bar signals. Adjust the 3.6 mc trap, 1 L 2 , to minimize this subcarrier signal. The 3.6 mc signal component can be exaggerated to facilitate this adjustment by advancing the aperture corrector control.
7. SUBCARRIER GENERATOR ADJUSTMENT
7.1 Oscillator

Connect the scope probe to terminal BG or BH , and adjust 2 T 2 for maximum amplitude of 3.6 mc subcarrier; then turn, one turn, counterclockwise. (NOTE: Oscillator must be locked to incoming color signal during this adjustment.)

7.2 Amplifier

Couple the scope probe loosely by clipping an insulated part of the lead wire to terminal BG or BH . Adjust 2 Tl for maximum amplitude of 3.6 mc subcarrier.
8. ADJUSTMENT OF SYNC PROCESSING AND PULSE GENERATION CIRCUITS

8.1 Interlace

Connect the scope probe to one end of 3 Ll . Adjust 3 Ll for maximum amplitude of 15.75 KC sine wave. Connect the scope to terminal BL and check to be sure that equalizing pulses are absent during vertical interval. Move the scope probe to point Q, and check to be sure that only the six vertical sync pulses are present. Observe the picture for interlace. If the interlace is imperfect, slightly retune 3 Ll (not over one-eighth turn) to produce perfect interlace.

8.2 Burst Gate

Connect the EXTERNAL trigger input of the scope toterminal Z. Set the scope to NEGATIVE EXT TRIGGER, and adjust the sweep for about 2 microseconds per centimeter. Connect the probe to terminal AJ, and observe the position of the colorburst signal. Move the probe to terminal AG (burst key pulse). Adjust 3Pl to place the leading edge of the burst key pulse between the trailing edge of sync and start of burst. Adjust 3P2 to place the trailing edge of the burst keying pulse at the end of colorburst.

If a dual-trace scope is available, the adjustment is simplified by placing one probe on terminal AJ, and the other probe on terminal AG, permitting simultaneous display of both signals.

If "hue" or "phase" errors are noted, recheck adjustment of 3P2. Hue errors, caused by faulty encoders or keying transients, can be minimized by cutting off the last cycle of burst. With a perfect encoded signal, 3P2 has little affect on phase.

9. UNITY CHROMA CALIBRATION

Do not attempt this adjustment unless an accurately-encoded standard color-bar signal is available.

Feed the monitor with a known accurately-encoded standard color-bar signal. Connect the scope probe to terminal J (BLUE signal). At this point, all of the color bars which do not contain BLUE should be at "black" level, and all of the bars which contain BLUE should be at 'white" level, i.e., all the same amplitude. Therefore, the procedure is to simultaneously adjust the HUE or PHASE control, 2P7, and the CHROMA control knob until this condition is obtained, i.e., the waveform should look like the figure on page 27 , Blue Signal at Point J.

When best adjustment is obtained, turn the manual CHROMA control counterclockwise until the switch operates. Then adjust the locking calibrate potentiometer, 2P3, until this condition is duplicated. Lock down 2 P3.

To check on correct operation, move the scope probe to terminal F to observe the RED signal. All color bars which contain RED should be equal at "white" level, and all bars which do not contain RED should be at 'black" level.

Similarly, check the GREEN signal at point H. All bars containing GREEN should be at "white" level, and all bars which do not contain GREEN should be at 'black' level.

In the event that all three channels do not check out perfectly, the best procedure is to make a compromise adjustment which rather favors the accuracy of the RED channel.

TM-27 COLOR MONITORS - TYPICAL SOCKET VOLTAGES

Tube Symbol	TUBE FUNCTION	$\begin{array}{r} \text { TUBE } \\ \text { TYPE } \\ \hline \end{array}$	Plate		Cathode		Grid		Screen		Suppressor		Filament	
			Pin No.	Volts DC	Pin No.	Volts DC	Pin No.	Volts DC	$\begin{aligned} & \text { Pin } \\ & \text { No } \end{aligned}$	Volts DC	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volts DC	Pin No.	Volts AC
4V1B	Red Video Output	6EB8	9	155	6	3.4	7	-. 46	8	173	-	-	4-5	6.3
4 V 2	Clamp	5751/12AX7	1	-3.7	3	11	2	-3.7	-			-	4-5-9	6.3
			6	200	8	140 g	7	30				-		
4 V 3	Clamp Pulse Generator	6DJ8	1	30	3	G	2	-1.5	-	-	-	-	4-5	6.3
			6	200	8	5.6	7	-39						
4 V 21 B	Green Video Output	6EB8	9	155	6	3.3	7	-2	-	-	-	-	4-5	6.3
4 V 22	Clamp	5751/12AX7	1	-1.7	3	11	2	-1.7	-	-	-	-	4-5-9	6.3
			6	200	8	145 g	7	30						
4V41B	Blue Video Output	6 EB 8	9	155	6	3.3	7	-1.5	8	173	-	-	4-5	6.3
4 V 42	Clamp	$5751 / 12 \mathrm{AX7}$	1	-2.2	3	11	2	-2.2	-	-	-	-	4-5-9	6.3
			6	200	8	1439	7	30						
5 Vl	V. Discharge \& Output	6 EM7	5	101	6	G	4	-9.8	-	-	-	-	7-8	6.3
			2	390	3	104	1	54						
5 V 2	Horizontal AFC	6BV8	3	52	1	-. 56	2	-11	-	-	-	-	4-5	6.3
			9	G	7	13	-	-						
			6	-. 44	8	13	-	-						
5 V 3	Horizontal Oscillator	6FQ7	1	21-29a	3	. 2	2	. 04	-	-	-	-	4-5	6.3
			6	270	8	. 13	7	-100						
5 V 4	Horizontal Output	6DQ5	-	-	3-6	. 22	1-5	-57	4-8	149	-	-	2-7	6.3
5V5	High Voltage Rectifier	3 A 3	-	-	-	-	1-5	-	-	-	-	-	2-7	24 KV
5 V 6	Focus Rectifier	1V2	PULSES PRESENT - DO NOT MEASURE											
5 V 7	Damper	6DW4	2-7	380	9	730	-	-	-	-	-	-	4-5	6.3
5 V 8	High Voltage Regulator	6BK4	-	-	1	380	5	370 b	-	-	-	-	2-7	6.3
7 VI	Power Supply Regulator	6080	5	510	6	395	4	325	-	-	-	-	7-8	6.3
			2	510	3	395	1	325						
7 V 2	Power Supply Regulator	6080	5	510	6	395	4	325	-	-	-	-	7-8	6.3
			2	285	3	200	1	175						
7 V 3	P.S. Reg. Amplifier	6 AU6	5	325	7	200	1	195	6	370	2	200	3-4	6.3
7 V 4	P.S. Reg. Amplifier	6BL8	6	175	7	86	2	83.5	3	150			4-5	6.3
			1	200	8	86	9	82						
7 V 5	Voltage Reference	5651	1-5	82	7	G	-	-	-	-	-	-	-	-
8 VI	Blanking Mixer	12AU7	6	127	8	0	7	-185	-	-	-	-	4-5-9	6.3
			1	127	3	G	2	-10						
8 V 2	Color Kinescope Green Blue	17EJP22	-	-	4	140 g	2	42	3	540 c	Focus		1-14	6.3
			-	-	5	145 g	6	42	7	$475{ }^{\text {e }}$	$9{ }^{9} 4$. 4 to		
			-	-	13	143 g	12	42	11	520 f		. 7 KV C		
CONDITIONS: All controls are adjusted to display a normal monochrome picture; then contrast is turned to minimum and brightness to mid-position; $\mathrm{B}+395 \mathrm{~V}$; measured with Hewlett-Packard 410B VTVM.					a-Varies with Hold Setting d-Varies with Red Screen Setting b-Varies with Ultor Adj. e-Varies with Green Screen Setting c-Varies with Focus Setting f-Varies with Blue Screen Setting g-Varies with Kine-Bias Setting									

ADDENDUM TO CYB INSTRUCTION MANUAL TO COVER

MODIFICATION D

Dispostion: To be included and to become a part of the CYB instruction manual.
Make the following changes:
Delete all references to $21^{\prime \prime}$ units.
Page 8: DIODES (Additions)

PICTURE TUBE FILAMENT REGULATOR BOARD 162290-1
A bridge-rectifier system develops approximately 12 volts DC across C4 which is dropped to 6.3 volts by Q4, pass transistor. This voltage is stabilized by Zener diode 16 D 5 and two silicon diodes, 16D6 and 16D7. Diode 16D8 and capacitor 16Cl are provided to protect the regulator from high voltage transients in case of picture tube flashover.

ARC SUPPRESSION BOARD 162321-1

This board is added to ensure circuit protection under CRT arcing conditions. It has three capacitors with arc-gaps to suppress any arcing developed in the picture tube.

Page 19: 3. CONVERGENCE - RED PURITY AND STATIC CENTER
Change this section to read as follows:

[^0]3.2 Check the purity ring and blue lateral magnet assembly for correct positioning. The BLUE gun is at the bottom, and the blue lateral magnet should be placed accordingly. (Refer to arrows on the assembly illustration.) Note that the BLUE gun on this picture tube is at the bottom, the RED gun on the top left, and the GREEN gun on the top right, viewing the unit from the back (socket side).
3.3 Release the three wing nuts and slide the deflection yoke all the way toward the convergence pole exciters.
3.4 Degauss the unit according to instructions on page 16 of the manual. Turn off the BLUE and GREEN screens, and advance the BRIGHTNESS control to produce a raster of medium brightness. If a crosshatch signal is available, turn the CONTRAST control to produce a subdued crosshatch on the kinescope.
3.5 Rotate the purity magnet assembly and/or spread the tabs to center the patch of red.

3.6 CENTER SCREEN CONVERGENCE

NOTE: This portion of the procedure is made considerably easier if some sort of video signal, having an exact center-of-raster reference, is used; an "Indian" and most crosshatches (grating patterns) provide exact center-of-raster points or crossings.

The preferred technique is to display the video signal discussed in the above note over a brighter-than-black background. Turn the BLUE screen ON and align the blue pattern with the red pattern, using the blue lateral and blue static convergence magnets. Turn the blue gun OFF and turn the green gun ON. Align the green pattern with the red pattern, using both the red and green static convergence magnets. It will probably be necessary to repeat this procedure at least twice before all three guns can be turned $O N$ and give patterns that are exactly coincident. Repeat step 3.5 if necessary.

When using the alternate technique (without crosshatch generator) locate and mark the center of the screen with a grease pencil or a piece of tape; the red patch of step 3.5 should be centered about this point. Turn the RED screen OFF and the BLUE screen ON. Center the blue patch, using both the blue lateral and blue static magnets. Turn the blue gun OFF, and turn the green gun ON. Center the green patch, using both the red and green static magnets. Turn the green gun OFF, and again turn the RED screen ON. Recenter the red patch, using the purity magnets employed in step 3.5, as it may have become decentered with the foregoing adjustments. It will probably be necessary to repeat this procedure at least twice. Ultimately, some monochrome video must be displayed and shows nocenter-screen color fringing.
3.7 When the red field is centered and all three guns converged in the center area, slide the deflection yoke forward to produce the best over-all red purity. Tighten the wing nuts.
3.8 Be sure that the yoke is rotated so that. scanning lines are "level". Tighten the three yoke screws. Turn BLUE and GREEN screens ON.

3.9 WIDE BLUE FIELD CORRECTION

The wide blue field adjustment is setat the factory. When adjustment is necessary due to the blue field overscanning the red and green, loosen the yoke thumbscrews; then tighten the "wide blue field" screw to reduce the width of the blue field. This positions the yoke vertically for proper blue beam scan.

CONVERGENCE AND DEFLECTION YOKE ASSEMBLY

Page 20: 4. CONVERGENCE - DYNAMIC
Change this section to read as follows:

GENERAL COMMENTS

Apply composite sync and a crosshatch or grating signal. Set BRIGHTNESS and CONTRAST controls so that brightness of crosshatch lines is low enough to prevent spot blooming. Set the size switch to WIDE position. Advance APERTURE control until vertical lines have the same brightness as horizontal lines.

Starting at the upperlefthand corner, adjust each convergence control in order, working from left to right. Refer to convergence chart and procedure. (NOTE: It is not necessary to gothrough the entire procedure to make minor adjustments. Simply refer to the convergence diagram and "touch up" the indicated adjustments as needed.)

RED AND GREEN CONVERGENCE

4.1 Turn off BLUE SCREEN, SW801. Adjust $R \leftrightarrow G$ TOP, P608, to converge vertical center lines at the top of the screen. NOTE: Throughout the entire convergence procedure, it may be necessary to make minor adjustments to previously set controls due to the interaction of components.
4. 2 Adjust $\mathrm{R} \leftrightarrow$ G BOTTOM, P604, to converge vertical center lines at the bottom of the screen.
4.3 Adjust R \& G TOP, P603, to converge horizontal lines at the top of the screen.
4.4 Adjust R \& $\mathrm{GOTTOM}, \mathrm{P} 602$, to converge horizontal lines at the bottom center of the screen.
4.5 Adjust $\mathrm{R} \leftrightarrow \mathrm{GRIGHT}$ L601, to converge vertical lines at the right side of the screen.
4.6 Adjust R/G RIGHT, L602, to converge horizontal lines at the right side of the screen.
4.7 Adjust $\mathrm{R} \leftrightarrow \mathrm{G}$ LEFT, P601, to converge vertical lines at the left side of the screen.
4. 8 Adjust R / G LEFT, P600, to converge horizontal lines at the left side of the screen.

RED AND BLUE CONVERGENCE

4.9 Turn on BLUE SCREEN, SW801, and turn off GREEN SCREEN, SW802. With the blue and red converged at the center of the screen, adjust the BLUE TILT control, P605, to produce equal displacement (convergence error) of top and bottom grating lines.
4. 10 Adjust BLUE AMPlitude control, P609, to converge top and bottomhorizontal lines. Readjust the BLUE centering magnet (convergence yoke), if necessary, to converge the center of the screen. Repeat steps 4.5 and 4.6 until best convergence is obtained.
4. 11 Adjust BLUE RIGHT \ddagger, L603, to converge horizontal center lines at the right side of the screen.
4. 12 Adjust BLUE LEFT \uparrow, P606, to converge center horizontal lines at the left side of the screen.
4. 13 Turn on GREEN SCREEN, SW 802, and make any minor adjustments needed to correct the RED and GREEN convergence.

UNDERSCAN CONVERGENCE

4. 14 Turn the size switch, SW551, to UNDERSCAN position. Converge the center of the screen with UNDERSCAN-R \rightarrow G DC CENTER, P611, and UNDERSCAN-BLUE DC CENTER \mathcal{f} control, P613.

Page 21: 4.15 Adjust UNDERSCAN - HORIZONTAL BALANCE \leftrightarrow, L600, for best over-all convergence along the horizontal axis of the tube.
4. 16 TOP AND BOTTOM PINCUSHION ADJUSTMENT AND YOKE COMPENSATING (RINGING) ADJUSTMENT

The top and bottom pincushion adjustment is factory-preset and normally needs no further adjustment.

Top and bottom pincushion adjustments may be made, if necessary, by adjusting for straight horizontal lines at the top and bottom of the raster.

With a crosshatch pattern on the screen, turn TOP/BOTTOM AMPlitude Pl001 fully clockwise. Adjust top/bottom pin phase L1001 to move the curvature to the center of the screen. Then adjust Plool for straight horizontal lines. Llool changes the phase of the horizontal correction waveform, and Plo0l affects its amplitude. Both controls are located on a sub-chassis at the rear of the convergence assembly. One of the yoke compensating coils, Ll002, is also located on the pincushion correction sub-assembly. It is factory-adjusted for minimum ringing on the left side of the raster. The second yoke compensating coil, L553, is located on the back apron. (Refer to paragraph 5.7.)

5. ADJUSTMENT OF HORIZONTAL AND HIGH VOLTAGE SYSTEM

Change this section to read as follows:

5. 1 HORIZONTAL OSCILLATOR ADJUSTMENT

Adjust Horizontal HOLD control P902 to the center of its range. Temporarily short-circuit the sync signal by placing a jumper between pin 3 of V550/6BV8 and chassis ground. Also short-circuit the "sine wave coil" by placing a jumper from pin 8 of V551/6FQ7 to chassis ground. Adjust the Horizontal HOLD control, P902, for correct horizontal oscillator frequency as evidenced by the picture being near synchronism. If this condition is not obtained with the Horizontal HOLD control, adjust core T550A (bottom slug) to obtain correct frequency.

Remove the temporary jumper from pin 8 of V55l/6FQ7, and adjust core T550B (top slug) to produce correct frequency. Remove the jumper from pin 3 of V550/ 6BV8.
5. 2 Remove the top high voltage cage cover. Set the UNDERSCAN switch to WIDE position. Hold the scope probe near (3 or 4 inches away) the flyback transformer and adjust the scope to display one or two of the horizontal pulses. Observe the sine wave ringing between retrace pulses. Adjust the width coil, L550 on the rear, to produce minimum amplitude ringing.
5. 3 Measure the high voltage. An electrostatic voltmeter, such as Sensitive Research Model ERSH, is preferred. Set the high voltage by means of P551, ULTOR VOLTAGE. Adjust the high voltage to the 20 to 22 KV range. DO NOT EXCEED 22 KV .
5.4 Observe the picture at low or medium brightness. The picture width should be nearly correct i.e., slightly overscanned. If the width is not near normal, check the adjustment of the B+, 395 -volt power supply, and the deflection tubes, V552/ 6JE6A/6LQ6, V551/6FQ7 and V555/6DW4 (6CL3).

If necessary, adjust the width coil to produce the desired width.
5.5 Check the efficiency and high voltage system performance by measuring currents as follows:
5.5.1 To measure I_{k} of V552/6JE6A/6LQ6, use Simpson Model 260, Series III, meter (or other meter having 50 microampere full-scale and 5000 ohm total resistance). Set the meter to read 50 microampere full-scale, and connect to J550 and J551. When thus connected, full-scale deflection of the meter represents 500 milliamperes of cathode current in the 6JE6A/ 6 LQ6 tube.
5.5.2 Adjust the horizontal linearity/efficiency coil, L552, for minimum current reading, which should be about 215 mA . Now advance this screw clockwise slightly until adequate high voltage performance is obtained. (See paragraph 5.3.) In no case allow this current to exceed 250 mA .

Page 22:
5.5.3 The available picture tube beam current is measured indirectly by turning the picture tube beam current off (with BRIGHTNESS and CONTRAST controls) and measuring the cathode current of the shunt regulator tube, V556/ 6 LH6A.
5.5.4 To measure this current, use a Simpson Model 260, Series III, meter or equal. Set the meter to read 50 microampere full-scale, and connect to J552 and J553. Full-scale deflection of the meter indicates 2.5 mA . For 22 KV of ultor voltage, the meter should read at least 0.8 mA . With new vacuum tubes and with the set at normal temperature, the reading will typically be about 1.5 milliamperes.
5.6 Throw the size switch to the UNDERSCAN position. Adjust underscan tuning coil L55l (on side of H. V. cage) for desired width. The underscan width should be as large as possible while still showing corners. Picture quality will deteriorate if the raster is smaller than necessary.
5.7 The second yoke compensating (ringing) coil, L553, is located on the back apron next to the linearity coil. It is the adjustment for minimum ringing on the left side of the raster.

Page 23: 9. Kinescope replacement
Remove old picture tube as follows
9.1 Remove bRIGHTnESS, Contrast, CHROMA and OFF/ON knobs. Remove the
9. 2 Unplug the deflection yoke.
9.3 Unplug the convergence pole piece assembly from the upper convergence chassis.
. 4 Remove the kines cope socket.
9. 5 Unplug the anode lead from the top of the kinescope.

Remove an 8.32 screw from each corner of the rear surface of the front panel. Remove
two aluminum handles from the front panel, thus releasing the front assembly from the two aluminum handes from the front panel. thus releasing the front assembly from the
monitor. Remove the screws from the tube strapateither side of the kinescope. Remove
the kinescope and set it face downward on a sofft tad. Remove the blue lateral magnetthe kinescope and set it face downward on a soft pad. Remove the blue lateral magnet-
purity ring assembly and complete deflection yoke and convergence pole piece a s sembly Install the new kinescope in reverse order. Take care to ensure that the "screen" is
positioned to fit the mask and that the kinescope neck is level and parallel with the sides

 Connect the CRT socket, deflection yoke socket, and conver ence socket. Turn on the
monitor and allow to warme Make complete purity and convergence adjustments, as
outined in section 3 , page 1 of this addendum.

Page 24: 10. Crt filament regulator
Delete this section.
Page 25: typical socket voltages
Delete V554/IV2, Focus Rectifier.

Pin $6-145 \mathrm{~g}$
\qquad
Add $\mathrm{Q4}$, Filament Regulator, DTG-110
$\mathrm{V}_{\mathrm{E}}-0 \mathrm{~V}$
$\mathrm{v}_{\mathrm{B}}--0.25 \mathrm{~V}$
$\mathrm{v}_{\mathrm{C}}--7 \mathrm{~V}$

Page 23: 9. KINESCOPE REPLACEMENT - Change to read:

Remove old picture tube as follows:
9.1 Remove BRIGHTNESS, CONTRAST, CHROMA and OFF/ON knobs. Remove the sides and top.
9.2 Unplug the deflection yoke.
9. 3 Unplug the convergence pole piece assembly from the upper convergence chassis.
9.4 Remove the kinescope socket.
9. 5 Unplug the anode lead from the top of the kinescope.

Remove an 8-32 screw from each corner of the rear surface of the front panel. Remove two aluminum handles from the front panel, thus releasing the front assembly from the monitor. Remove the screws from the tube strap at either side of the kinescope. Remove the kinescope and set it face downward on a soft pad. Remove the blue lateral magnetpurity ring assembly and complete deflection yoke and convergence pole piece assembly.

Install the new kinescope in reverse order. Take care to ensure that the "screen" is positioned to fit the mask and that the kinescope neck is level and parallel with the sides of the chassis. Make sure that the ground spring which grounds the outside aquadag coating of the picture tube is in position. Place the deflection yoke complete housing assembly in position. Place the blue lateral magnet assembly over the pole pieces. Connect the CRT socket, deflection yoke socket, and convergence socket. Turn on the monitor and allow to warm. Make complete purity and convergence adjustments, as outlined in section 3 , page 1 of this addendum.

Page 24: 10. CRT FILAMENT REGULATOR
Delete this section.

Page 25: TYPICAL SOCKET VOLTAGES
Delete V554/lV2, Focus Rectifier.
Change V900 to 17303 P 22 or 1835 P 22 , with pins and voltages as follows:

Cathode	Grid		
	Screen		Focus
Pin 2-140g	Pin 3-42		Pin $4-540_{\mathrm{d}}$

Add Q4, Filament Regulator, DTG-110:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{E}}-0 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{B}}--0.25 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{C}}--7 \mathrm{~V}
\end{aligned}
$$

Pages 31 through 49: REPLACEABLE PARTS

Add the following:

	CAPACITORS		
C4	Electrolytic, $1500 \mu \mathrm{~F}, 50 \mathrm{~V}$	WP-068	MAL
C421-1	Mica, $10 \mathrm{pF}, 5 \%, 500 \mathrm{~V}$	DM15-100J	ELM
C507-1	Electrolytic, $50 \mu \mathrm{~F}, 150 \mathrm{~V}$	TC49A	MAL
C508	Electrolytic, $10 \mu \mathrm{~F}, 150 \mathrm{~V}$	BBR10-150	$C D$
C509, C510	Electrolytic, $2000 \mu \mathrm{~F}, 15 \mathrm{~V}$	BR2000-15	$C D$
C511	Paper Tubular, $4700 \mathrm{pF}, 10 \%$, 600 V	PKM-6D47	CD
C573	Mica, $150 \mathrm{pF}, 5 \%, 500 \mathrm{~V}$	DM15-151J	ELM
C819, C820	Mica, $470 \mathrm{pF}, 5 \%, 2500 \mathrm{~V}$	VCM35B471J	ELM
Cl001	Polycarbonate, 4.7 $7 \mathrm{~F}, 10 \%, 100 \mathrm{~V}$	C281CH/A4M7	AMP
Cl 002	Electrolytic, $8 \mu \mathrm{~F}, 450 \mathrm{~V}$	TC71A	MAL
C1003	Polycarbonate, $100,000 \mathrm{pF}, 10 \%$, $200 \mathrm{~V}, \mathrm{MF} 575$		PAK
C1003-1	Polycarbonate, $100,000 \mathrm{pF}, 10 \%, 200 \mathrm{~V}, \mathrm{MF} 575$		PAK
D1001	Diode: Silicon Rectifier, $600 \mathrm{~V}, 1 \mathrm{~A}$	CL-6	PC
L553	Coil: Yoke Compensating	770335	CONRAC
L1001	Coil: Pin Phase	770332	CONRAC
L1002	Coil: Yoke Compensating	770240	CONRAC
	POTENTIOMETERS		
P912	Composition, 10 megohms (Focus)	928335	CONRAC
P1001	Composition, 10,000 ohms (Top/Bottom Amplitude)	928077	CONRAC
Q4	Transistor: Germanium Power	DTG-110	DEL
	RESISTORS		
R515, R516	Composition, 100 ohms, 10%, $\frac{1}{2}$ w		AB
R607-1	Composition, 220 ohms, 10%, $\frac{1}{2}$ w		AB
R1001	Composition, 300 ohms, $5 \%, \frac{1}{2} \mathrm{w}$		AB
R1002	Composition, 270 ohms, $10 \%, \frac{1}{2} \mathrm{w}$		AB
VR1001	Varistor, $1 \mathrm{~mA}, 175 \mathrm{~V}$	334 BNR - 10	CAR
T1001	Transformer: Side Pincushion	965064	CONRAC
T1002	Transformer: Top Pincushion	965065	CONRAC

MISCELLANEOUS	
Cap Assembly: Anode	
Connector: Female, 3 Contact	
Connector: Female, Nylon, Single Contact	
	Connector: Female, Mate-N-Lock Contact
	Connector: Male, Mate-N-Lock Contact
	Connector: Pincushion Housing
Connector: Socket Housing	
SW551-1	Knob: Secondary Control, Black
	Socket: Transistor (DTG-110)
	Switch: Rotary (U/Scan Deck \#3)
	Terminal Strip: 4 Point
	Terminal Strip: 7 Point
	Terminal Strip: 12 Point

117109	CONRAC
886074	CONRAC
886088	CONRAC
$886102-2$	CONRAC
$886102-1$	CONRAC
$886099-1$	CONRAC
$886099-2$	CONRAC
$361024-1$	CONRAC
$935046-4$	CONRAC
950077	CONRAC
$384004-4$	CONRAC
$384004-7$	CONRAC
$384004-12$	CONRAC

Filament Regulator Board 162290-1

16Cl	Capacitor: Polycarbonate, $4.7 \mu \mathrm{~F}, 10 \%, 100 \mathrm{~V}$	$\mathrm{C} 281 \mathrm{CH} / \mathrm{A} 4 \mathrm{M} 7$	AMP
16Dl to 16D4	Diode: Silicon Rectifier	SCE6	SEM
16D5	Diode: Zener, 5.lV, $2 \%, 400 \mathrm{mw}$	4 M 5.1 ZS	MOT
16D6 to 16D8	Diode: Silicon Rectifier	SCE6	SEM
16R1	Resistor: Composition, $150 \mathrm{ohms}, 5 \%, \frac{1}{2} \mathrm{w}$		AB

Arc Suppression Board 162321-1

19Cl to 19C3 Capacitor: Gap, $10,000 \mathrm{pF}, 1000 \mathrm{WV}(2-3 \mathrm{KV}$ Arc)
GAP103
CRL
19Rl to l9R3 Resistor: Composition, 4700 ohms, 10%, $\frac{1}{2}$ w

Change the following to read:

	CAPACITORS		
C503	Isofarad Plastic, $15,000 \mathrm{pF}, 10 \%, 500 \mathrm{~V}$	279P15395X	SP
C564	Gap, $10,000 \mathrm{pF}, 1000 \mathrm{WV}(2-3 \mathrm{KV} \mathrm{Arc})$	GAP103	CRL
C572	Electrolytic, $1 \mathrm{HF}, 20 \%, 600 \mathrm{~V}$	BA2G105	IMB
C602	Paper, $100,000 \mathrm{pF}, 10 \%, 600 \mathrm{~V}$	160 P 10492	SP

	COILS		
L550	High Z	770336	CONRAC
L551	Width	770336	CONRAC
L910	Deflection Yoke	994070	CONRAC
L911	Pole Exciter	994072	CONRAC
P906	Potentiometer: Composition, $10 / 10 \mathrm{ohms}$ (Vert. Centering)	928355	CONRAC
	RESISTORS		
R 504	Composition, 470,000 ohms, 5%, $\frac{1}{2} \mathrm{w}$		AB
R508	Composition, 82,000 ohms, 10%, $\frac{1}{2}$ w		AB
R 509	Composition, 680, 000 ohms, $10 \%, \frac{1}{2} \mathrm{w}$		AB
R 561	Film, 178, 000 ohms, $1 \%, 1 / 4 \mathrm{w}, \mathrm{N} 60 / \mathrm{N} 65$		COR
R 562	Composition, 150, 000 ohms, $10 \%, 2 \mathrm{w}$		AB
R574	Composition, 2000 ohms, 5\%, 1 w		AB
R 575	Composition, 47,000 ohms, 10%, $\frac{1}{2} \mathrm{w}$		AB
R576	Composition, 680 ohms, 10%, $\frac{1}{2}$ w		AB
R815	Composition, 18,000 ohms, $10 \%, \frac{1}{2} \mathrm{w}$.		AB
$\begin{aligned} & \text { R817 } \\ & R 607 \end{aligned}$	Composition, 1.2 megohms, $10 \%, \frac{1}{2}$ w Composition, 2200 ohms, 100 o, $1 / 2 \mathrm{w}$		${ }_{A B}^{A B}$
T550	Transformer: Vertical Output	965066	CONRAC
T551	Transformer: Horizontal Flyback	782050	CONRAC

MIS CE LLANEOUS

Mask: $17^{\prime \prime}$	390045	CONRAC
Ring: Blue Lateral and Purity Magnet Assembly	844072	CONRAC
Shield: $17^{\prime \prime}$ Kinescope	394290	CONRAC

Delete the following:

C816	Capacitor: Mica, $820 \mathrm{pF}, 10 \%, 500 \mathrm{~V}$	CM20B821K	ELM
	RESISTORS		
R577	Composition, 100,000 ohms, 10\%, $\frac{1}{2}$ w		AB
R751	Composition, 100,000 ohms, $10 \%, \frac{1}{2} \mathrm{w}$		$A B$
R752	Regulator - CRT Filament	22-4	AMP
R754	Wirewound, 18 ohms, 10%, $5 \mathrm{w}, \mathrm{X} 60$		TO
R 757	Composition, 33 ohms, 5\%, 2 w		AB
R760	Composition, 100,000 ohms, $10 \%, \frac{1}{2} \mathrm{w}$		AB
R830	Composition, 100 ohms, $10 \%, \frac{1}{2}$ w		$A B$
T552	Transformer: Focus	770088	CONRAC
XV554	Socket: High Voltage (lV2)	935002	CONRAC

Page 50: CONVERGENCE CHART - Replace with revised chart on page 3 of this addendum.

Page 5l: Schematic Block Diagram 452201Q, Sheet 2, replace with 452489A, Sheet 2.

Page 53: Schematic Diagram 452201B, Sheet l, replace with 452489A, Sheet 1.

Page 55: Schematic Diagram, Power Supply, 452201J, Sheet 3, replace with 452489A, Sheet 3.

Add Schematic Diagram 452375A, Filament Regulator Board 162290-1. Add Schematic Diagram 452411A, Arc Suppression Board 162321-1.

Page 80: MANUFACTURERS OF REPLACEABLE PARTS
Add the following:
*CODE MANUFACTURER LOCATION

AMP	Amperex Electronic Corporation	Hicksville, L. I., New York ll 1802
CAR	Carborundum Company	Niagara Falls, New York 14302
DEL	Delco Radio Division, General Motors Corp.	Kokomo, Indiana 46901
IMB	IMB Electronic Products, Inc.	Santa Fe Springs, California 90670
PAK	Paktron Division, Illinois Tool Works, Inc.	Alexandria, Virginia 22300
PC	Power Components, Inc.	Scottsdale, Pennsylvania 15683

Typical Waveforms

CONDITIONS FOR WAVEFORM PHOTOGRAPHS

Input Signal: Standard composite color bar signal, 1.4 volts peak-to-peak.

Monitor Adjustment: Monitor adjusted and set up to produce a typical"normal"picture (wide scan).

Time Base:
All photographs taken with horizontal sweep speed of 10 microseconds per cm, except where otherwise stated.

Equipment Used: Tektronix 531A scope with $10: 1$ attenuator probe and Polaroid camera.

Video Input at Terminal V
. 5 Volts/CM

Same Wave Appears at Terminal AZ -. 2 V P-P Same Wave Appears at Terminal AJ-1.3 V P-P

Processed Luminance Signal at Point U
1 Volt/ CM

This is a double exposure, showing the added 'Brightness Pulse" at both extremes of the brightness control range.

Delay Line Input at Junction of 1R29 and 1R31
1 Volt/CM

Same Wave Appears at Collector of 1Q15 2.8 Volts P-P

Red Signal at Kinescope Pin \#4 100 Volts/CM
Zero Volts DC at Bottom Line of Graticle

Typical Waveforms

Green Signal at Kinescope Pin \#5 100 Volts/CM
Zero Volts DC at Bottom Line of Graticle

Top Trace: $\quad \mathrm{R}-\mathrm{Y}$ Signal at Point R Bottom Trace: B-Y Signal at Point S . 5 Volt/CM

Red Signal at Point F

$$
.5 \text { Volt/CM }
$$

Same Wave Appears at Point AK at 5 V P-P

Blue Signal at Kinescope Pin \#13 100 Volts/CM
Zero Volts Reference at Bottom Line of Graticle

Chroma Signal at Emitter of 2 Q2 1 Volt/CM

This wave also appears at collector of 2 Ql and junction of 2 R 14 and 2 Cl 12 at $.8 \mathrm{~V} \mathrm{P}-\mathrm{P}$.

Green Signal at Point H , . 5 Volt/CM

This wave also appears at point AL. at 3.6 V P-P.

Typical Waveforms

Blue Signal at Point J

$$
.5 \text { Volt/CM }
$$

This wave also appears at Point AMat 4.3V P-P

Top Trace: Demodulated Burst at Emitter of 2Q7 2 Volts/CM

The demodulated burst ($\mathrm{R}-\mathrm{Y}$ axis) normally goes through a null at this point. To illustrate circuit action, photograph was made with color subcarrier oscillator thrown out of synchronization by grounding point AS.

Bottom Trace: Burst Key Pulse at Point AG 10 Volts/CM

Hue Control Pulses
Top Trace Point BM (B-Y) Bottom Trace Point BO (Y-B) 1 Volt/CM

Color Kill Signal - Collector of 2Q17 5 Volts/CM
(Bottom trace is burst key pulse at Point AG, 10 Volts/CM, shown for reference.)

The demodulated burst ($\mathrm{B}-\mathrm{Y}$ axis) is clamped to ground by the burst key pulse. The resulting wave is filtered to obtain the "DC" color killer voltage.

Subcarrier Signal at Point BG or BH 10 Volts/CM
Sweep Speed $=1 / 10 \mathrm{Microsecond} / \mathrm{CM}$

Typical Waveforms Sync and Pulse Waves

Composite Sync, Terminal N
5 Volts/cm
Sweep: $2 \mathrm{msec} / \mathrm{cm}$

Vertical Trigger, Terminal Q 5 Volts/cm Sweep: $2 \mathrm{msec} / \mathrm{cm}$

Vertical Drive at Terminal L
5 Volts/cm Sweep: $2 \mathrm{msec} / \mathrm{cm}$

Composite Sync, Terminal N
5 Volts/cm
Sweep: 10 microsec/cm

Vertical Trigger, Terminal Q
5 Volts/cm
Sweep: 50 microsec/cm

Differentiated Sync at Terminal AH
5 Volts/cm
Sweep: $10 \mathrm{microsec} / \mathrm{cm}$

Typical Waveforms
 Sync and Pulse Waves

Burst Key Pulse at Terminal AF 5 Volts/cm

Brightness Pulse at Terminal Z

Blanking at Kinescope Grid \#1
20 Volts/cm Sweep: $2 \mathrm{msec} / \mathrm{sec}$

Burst Key Pulse at Terminal AG 5 Volts/cm

Horizontal Drive Pulse at Terminal BL

Blanking at Kinescope Grid \#1
20 Volts/cm
Sweep: $10 \mathrm{microsec} / \mathrm{cm}$

Typical Waveforms
Sync and Pulse Waves

Clamp Pulse at Pin 6 of 4 V 3 20 Volts/cm
Sweep: $10 \mathrm{microsec} / \mathrm{cm}$

Clamp Pulse at Pin 1 of 4 V 3 50 Volts/cm
Sweep: $10 \mathrm{microsec} / \mathrm{cm}$

Vertical Deflection Waves

Vertical Sawtooth at Pin l of 5V1
50 Volts/cm; Zero Center Sweep: $2 \mathrm{msec} / \mathrm{cm}$

Vertical Convergence at Pin 3 of 5V1 5 Volts/cm; Zero at Bottom of Graticle Sweep: $2 \mathrm{msec} / \mathrm{cm}$

Vertical Output at Pin 2 of 5 V 1 200 Volts/cm Sweep: $2 \mathrm{msec} / \mathrm{cm}$

Yoke Voltage at Yellow Lead of 5 TI
20 Volts/cm
Sweep: $2 \mathrm{msec} / \mathrm{cm}$

Typical Waveforms Horizontal Deflection Waves

Ringing Coil Voltage at Pin 8 of 5 V 3
20 Volts/cm
Sweep: $10 \mathrm{microsec} / \mathrm{cm}$

Damper Plate, Pin 2 of 5 V 7
50 Volts/cm
Sweep: $10 \mathrm{microsec} / \mathrm{cm}$

Grid Drive at Pin 5 of 5 V 4 50 Volts/cm
Sweep: $10 \mathrm{microsec} / \mathrm{cm}$

Terminal "A" of Flyback, 5T3 200 Volts/cm
Sweep: $10 \mathrm{microsec} / \mathrm{cm}$

Terminal U of Flyback
100 Volts/cm
Sweep: $10 \mathrm{microsec} / \mathrm{cm}$

Color Monitor, Rear View

Color Monitor, Top View

Color Monitor, Right Side View

LIST OF PARTS

Symbol	$\begin{gathered} \text { RCA } \\ \text { Stock No. } \end{gathered}$	Description
		CAPACITORS:
1 Cl	230248	Trimmer, 5.5-18 mmf
1 C 2	230237	Mica, $43 \mathrm{mmf}, 5 \%, 500 \mathrm{v}$
1 C 3	228960	Electrolytic, $5 \mathrm{mfd}, 25 \mathrm{v}$
1 C 4	218097	Ceramic, $100,000 \mathrm{mmf}, 500 \mathrm{v}$
1C5, 1C6	230232	Electrolytic, $150 \mathrm{mfd}, 15 \mathrm{v}$
1 C 7	230221	Electrolytic, $25 \mathrm{mfd}, 15 \mathrm{v}$
1 C 8	230238	Mica, $130 \mathrm{mmf}, 5 \%, 500 \mathrm{v}$
1 C 9	230232	Electrolytic, $150 \mathrm{mfd}, 15 \mathrm{v}$
1 Cl 10	218097	Ceramic, $100,000 \mathrm{mmf}, 500 \mathrm{v}$
$1 \mathrm{Cl1}$	300603	Paper, $470,000 \mathrm{mmf}, 10 \%, 200 \mathrm{v}$
$1 \mathrm{Cl2}$	227692	Mica, $360 \mathrm{mmf}, 5 \%$, 500 v
1 Cl 3	230239	Mica, $100 \mathrm{mmf}, 5 \%, 500 \mathrm{v}$
1 C 14	218097	Ceramic, $100,000 \mathrm{mmf}, 500 \mathrm{v}$
1 C 15	230232	Electrolytic, $150 \mathrm{mfd}, 15 \mathrm{v}$
1 Cl 16	230240	Mica, $56 \mathrm{mmf}, 5 \%, 500 \mathrm{v}$
1 C 17	230222	Electrolytic, $2 \mathrm{mfd}, 25 \mathrm{v}$
1 Cl 8	230240	Mica, $56 \mathrm{mmf}, 5 \%, 500 \mathrm{v}$
1 C 19	218097	Ceramic, 100, $000 \mathrm{mmf}, 500 \mathrm{v}$
1 C 20	230232	Electrolytic, $150 \mathrm{mfd}, 15 \mathrm{v}$
1 C 21	218097	Ceramic, $100,000 \mathrm{mmf}, 500 \mathrm{v}$
1 C 22	230232	Electrolytic, $150 \mathrm{mfd}, 15 \mathrm{v}$
1 C 23	230239	Mica, $100 \mathrm{mmf}, 5 \%, 500 \mathrm{v}$
1 C 24	230223	Electrolytic, $10 \mathrm{mfd},-10 \%+100 \%, 15 \mathrm{v}$
1 C 25	230241	Mica, $20 \mathrm{mmf}, 5 \%, 500 \mathrm{v}$
1 C 26	230240	Mica, $56 \mathrm{mmf}, 5 \%, 500 \mathrm{v}$
2 Cl	300590	Paper, 47,000 mmf, 20\%, 200 v
2 C 2	230242	Mica, $47 \mathrm{mmf}, 5 \%, 500 \mathrm{v}$
2 C 3	75643	Paper, $1000 \mathrm{mmf}, 20 \%, 600 \mathrm{v}$
2 C 4	106547	Ceramic Disc, $4700 \mathrm{mmf}, 20 \%, 500 \mathrm{v}$
2 C 5	230243	Mica, $120 \mathrm{mmf}, 5 \%, 500 \mathrm{v}$
2 C 6	230235	Electrolytic, $3.3 \mathrm{mfd}, 20 \%, 35 \mathrm{v}$, Tantalum
2 C 7	230245	Mica, $150 \mathrm{mmf}, 5 \%, 500 \mathrm{v}$
		Paper, $10,000 \mathrm{mmf}, 20 \%, 200 \mathrm{v}$
	300590	Paper, 47, $000 \mathrm{mmf}, 20 \%, 200 \mathrm{v}$
$2 \mathrm{Cl1}$ 2 Cl 12	230243	Paper, $10,000 \mathrm{mmf}, 20 \%, 200 \mathrm{v}$ Mica, $120 \mathrm{mmf}, 5 \%$, 500 v
2 Cl 3	230235	Electrolytic, $3.3 \mathrm{mfd}, 20 \%, 35 \mathrm{v}$, Tantalum
2 C 14	230245	Mica, $150 \mathrm{mmf}, 5 \%, 500 \mathrm{v}$
2 Cl 15	300590	Paper, 47, $000 \mathrm{mmf}, 20 \%, 200 \mathrm{v}$
2 Cl 16		Not Used
2 C 17	73960	Ceramic Disc, $10,000 \mathrm{mmf}, 500 \mathrm{v}, \mathrm{GMV}$
2 C 18	218249	Mica, $1200 \mathrm{mmf}, 5 \%, 500 \mathrm{v}$
2 C 19 2 C 20	230244	Mica, $220 \mathrm{mmf}, 5 \%, 500 \mathrm{v}$
2 C 20	112660	Ceramic Disc, $1000 \mathrm{mmf}, 10 \%, 500 \mathrm{v}$
2C21, 2C22	73960	Ceramic Disc, $10,000 \mathrm{mmf}, 500 \mathrm{v}, \mathrm{GMV}$
2 C 23	219195	Mica, $1000 \mathrm{mmf}, 5 \%, 100 \mathrm{v}$
$\begin{aligned} & 2 \mathrm{C} 24 \text { to } 2 \mathrm{C} 26 \\ & 2 \mathrm{C} 27 \end{aligned}$	73960 106547	Ceramic Disc, $10,000 \mathrm{mmf}, 500 \mathrm{v}, \mathrm{GMV}$ Ceramic Disc, $4700 \mathrm{mmf}, 20 \%, 500 \mathrm{v}$
$\underline{2 \mathrm{C} 27}$	106547	Ceramic Disc, $4700 \mathrm{mmf}, 20 \%, 500 \mathrm{v}$

Symbol	RCA Stock No.	Description
2C28		Paper, 10,000 mmf, 20\%, 200 v
2C29, 2C30		Not Used
2C31	258080	Metallized Paper, $2 \mathrm{mfd}, 10 \%$, 100 v
2C32		Not Used
2C33		Paper, 10,000 mmf, 20\%, 200 v
2C34	921651	Paper, $100,000 \mathrm{mmf}, 20 \%, 200 \mathrm{v}$
2C35	230224	Electrolytic, $2 \mathrm{mfd},-10 \%+100 \%, 15 \mathrm{v}$
2C36		Paper, $10,000 \mathrm{mmf}, 20 \%, 200 \mathrm{v}$
2 C 37	230240	Mica, $56 \mathrm{mmf}, 5 \%, 500 \mathrm{v}$
2C38	230225	Electrolytic, $10 \mathrm{mfd},-10 \%+100 \%, 3 \mathrm{v}$
2C39, 2C40	230244	Mica, $220 \mathrm{mmf}, 5 \%, 500 \mathrm{v}$.
2C41	230235	Electrolytic, $3.3 \mathrm{mfd}, 20 \%$, 35 v , Tantalum
2 C 42	228721	Electrolytic, $10 \mathrm{mfd}, 25 \mathrm{v}$
2C43	230226	Electrolytic, $100 \mathrm{mfd},-10 \%+100 \%, 15 \mathrm{v}$
2C44	230243	Mica, $120 \mathrm{mmf}, 5 \%, 500 \mathrm{v}$
2 C 45	228721	Electrolytic, $10 \mathrm{mfd}, 25 \mathrm{v}$
2C46	230226	Electrolytic, $100 \mathrm{mfd},-10 \%+100 \%, 15 \mathrm{v}$
2C47	230243	Mica, $120 \mathrm{mmf}, 5 \%, 500 \mathrm{v}$
2 C 48	228721	Electrolytic, $10 \mathrm{mfd}, 25 \mathrm{v}$
2 C 49	230226	Electrolytic, $100 \mathrm{mfd},-10 \%+100 \%, 15 \mathrm{v}$
2C50	230243	Mica, $120 \mathrm{mmf}, 5 \%, 500 \mathrm{v}$
2C51, 2C52	218097	Ceramic, $100,000 \mathrm{mmf}, 500 \mathrm{v}$
2C53, 2C54	224358	Electrolytic, $75 \mathrm{mfd}, 25 \mathrm{v}$
2C55	230227	Electrolytic, $25 \mathrm{mfd}, 25 \mathrm{v}$
2C56		Not Used
2 C 57	228721	Electrolytic, $10 \mathrm{mfd}, 25 \mathrm{v}$
2C58		Not Used
2C59	230226	Electrolytic, $75 \mathrm{mfd}, 25 \mathrm{v}$
2C60		Not Used
2 C 61	218097	Ceramic, $100,000 \mathrm{mmf}, 500 \mathrm{v}$
2C62		Not Used
2 C 63	300590	Paper, 47,000 mmf, 20\%, 200 v
2 C 64	230242	Mica, 47 mmf , 5\%, 500 v
$2 C 65$ 2066	230224	Electrolytic, $2 \mathrm{mfd},-10 \%+100 \%, 15 \mathrm{v}$ MICA, 39 MMF, $50 \%, 500 \mathrm{~V}$ (ELMENCO \#DM10-390J)
3 Cl	107594	Ceramic Disc, $8.2 \mathrm{mmf}, \pm 10 \%, 500 \mathrm{v}$
3 C 2	228960	Electrolytic, $5 \mathrm{mfd}, 25 \mathrm{v}$
3C3, 3C4	228721	Electrolytic, $10 \mathrm{mfd}, 25 \mathrm{v}$
3 C 5	218097	Ceramic, $100,000 \mathrm{mmf}, 500 \mathrm{v}$
3 C 6	230232	Electrolytic, $150 \mathrm{mfd}, 15 \mathrm{v}$
3 C 7	230236	Mica, $390 \mathrm{mmf}, 5 \%, 100 \mathrm{v}$
3 C 8	219195	Mica, $1000 \mathrm{mmf}, 5 \%, 100 \mathrm{v}$
3 C 9		Paper, $10,000 \mathrm{mmf}, 10 \%, 200 \mathrm{v}$
3 Cl 0	106943	Mica, $470 \mathrm{mmf}, 5 \%, 500 \mathrm{v}$
3 Cll		Paper, 10,000 mmf, 10\%, 200 v
3 Cl 2	921796	Mica, $3900 \mathrm{mmf}, 5 \%, 500 \mathrm{v}$
3 Cl 3	106943	Mica, $470 \mathrm{mmf}, 5 \%, 500 \mathrm{v}$
3 Cl 4	219195	Mica, $1000 \mathrm{mmf}, 5 \%, 100 \mathrm{v}$
3 C 15	230239	Mica, $100 \mathrm{mmf}, 5 \%, 500 \mathrm{v}$
3 Cl 16	230048	Mica, $910 \mathrm{mmf}, 5 \%, 300 \mathrm{v}$
3 C 17		Paper, $10,000 \mathrm{mmf}, 10 \%, 200 \mathrm{v}$
3C18, 3C19	230239	Mica, $100 \mathrm{mmf}, 5 \%, 500 \mathrm{v}$

Symbol	$\begin{gathered} \text { RCA } \\ \text { Stock No. } \end{gathered}$	Description
3 C 20	218097	Ceramic, $100,000 \mathrm{mmf}, 500 \mathrm{v}$
3 C 21	224358	Electrolytic, $75 \mathrm{mfd}, 25 \mathrm{v}$
3 C 22	218097	Ceramic, $100,000 \mathrm{mmf}, 500 \mathrm{v}$
3 C 23	224358	Electrolytic, $75 \mathrm{mfd}, 25 \mathrm{v}$
3 C 24	921651	Paper, 100, $000 \mathrm{mmf}, 10 \%$, 200 v
3 C 25	73960	Ceramic Disc, $10,000 \mathrm{mmf}, 500 \mathrm{v}$, GMV
3 C 26 to 3 C 29		Not Used
3 C 30	73960	Ceramic Disc, $10,000 \mathrm{mmf}$, 500 v , GMV
3C31, 3C32	112660	Ceramic Disc, 1000 mmf , 10%, 500 v
4 Cl	73594	Paper, 10,000 mmf, 20\%, 600 v
4 C 2	227530	Paper, $100,000 \mathrm{mmf}, 20 \%, 400 \mathrm{v}$
4 C 3	300186	Mica, $180 \mathrm{mmf}, 5 \%, 500 \mathrm{v}$
4 C 4		Not Used
4 C 5	227530	Paper, 100,000 mmf, 20\%, 400 v
4 C 6	921651	Paper, $100,000 \mathrm{mmf}, 20 \%$, 200 v
4 C 7	230247	Ceramic Disc, $56 \mathrm{mmf}, 1000 \mathrm{v}$
4 C 8 to 4C20		Not Used
4 C 21	73594	Paper, $10,000 \mathrm{mmf}, 20 \%, 600 \mathrm{v}$
4 C 22	227530	Paper, $100,000 \mathrm{mmf}, 20 \%, 400 \mathrm{v}$
4 C 23	300186	Mica, $180 \mathrm{mmf}, 5 \%, 500 \mathrm{v}$
4 C 24 to 4C40		Not Used
4 C 41	73594	Paper, $10,000 \mathrm{mmf}, 20 \%, 600 \mathrm{v}$
4 C 42	227530	Paper, $100,000 \mathrm{mmf}, 20 \%, 400 \mathrm{v}$
4 C 43	300186	Mica, $180 \mathrm{mmf}, 5 \%, 500 \mathrm{v}$
5 Cl	228434	Paper, 220,000 mmf, 10\%, 200 v
5 C 2		Paper, 18,000 mmf, $10 \%, 200 \mathrm{v}$
5 C 3	230232	Electrolytic, $150 \mathrm{mfd}, 15 \mathrm{v}$
5 C 4	230223	Electrolytic, $10 \mathrm{mfd},-10 \%+100 \%, 15 \mathrm{v}$
5 C 5	230222	Electrolytic, $2 \mathrm{mds}, 25 \mathrm{v}$
5 C 6 to 5 C 9		Not Used
5 C 10	921651	Paper, $100,000 \mathrm{mmf}, 10 \%$, 200 v
$5 \mathrm{Cl11}$	230222	Electrolytic, $2 \mathrm{mfd}, 25 \mathrm{v}$
5 Cl 2	300603	Paper, $470,000 \mathrm{mmf}, 10 \%, 200 \mathrm{v}$
5 C 13		Not Used
5 C 14	204821	Paper, 15,000 mmf, 10\%, 600 v
5 C 15		Paper, 47,000 mmf, 10\%, 600 v
5 C 16	227694	Paper, $1000 \mathrm{mmf}, 10 \%, 1600 \mathrm{v}$
5 C 17	109227	Electrolytic, $50 \mathrm{mfd}, 150 \mathrm{v}$
$5 \mathrm{C} 18,5 \mathrm{Cl} 9$		Not Used
5 C 20	227530	Paper, $100,000 \mathrm{mmf}, 10 \%, 400 \mathrm{v}$
$5 \mathrm{C} 21,5 \mathrm{C} 22$	230242	Mica, 47 mmf , 5\%, 500 v
5C23, 5C24	219743	Mica, $820 . \mathrm{mmf}, 10 \%, 500 \mathrm{v}$
5 C 25	230250	Film, $10,000 \mathrm{mmf}, 5 \%, 500 \mathrm{~V}$
5 C 26	73594	Paper, $10,000 \mathrm{mmf}, 10 \%, 600 \mathrm{v}$
5 C 27	109806	Ceramic, 390 mmf , 5\%, N1500
5 C 28	218777	Mica, $1500 \mathrm{mmf}, 10 \%, 500 \mathrm{v}$
5 C 29	218468	Mica, $680 \mathrm{mmf}, 5 \%$, 500 v
5 C 30	228573	Paper, $100,000 \mathrm{mmf}, 20 \%, 600 \mathrm{v}$
5 C 31	230246	Ceramic, $120 \mathrm{mmf}, 20 \%, 5000 \mathrm{v}$
5C32, 5C33	227530	Paper, $100,000 \mathrm{mmf}, 10 \%, 400 \mathrm{v}$
5 C 34	229933	Paper, $150,000 \mathrm{mmf}, 20 \%, 400 \mathrm{v}$

Symbol	$\begin{aligned} & \text { RCA } \\ & \text { Stock No. } \end{aligned}$	Description
5 C 35		Paper, $120,000 \mathrm{mmf}, 10 \%, 600 \mathrm{v}$
5 C 36	73920	Paper, $4700 \mathrm{mmf}, 20 \%, 600 \mathrm{v}$
5 C 37		Not Used
5 C 38	210965	Paper, 150,000 mmf, 20\%, 200 v
5 C 39	227530	Ceramic Disc, $1000 \mathrm{mmf}, 10 \%, 500 \mathrm{v}$
5 C 40	230249	Ceramic Disc, $100 \mathrm{mmf}, 5 \%, 3000 \mathrm{v}$
$5 \mathrm{C} 41,5 \mathrm{C} 42$	230234	Ceramic Disc, $390 \mathrm{mmf}, 20 \%$, 3000 v
5 C 43		Not Used
5 C 44	106547	Ceramic Disc, 4700 mmf , 20\%, 500 v
5 C 45		Not Used
$\begin{aligned} & 5 \mathrm{C} 46 \\ & 5 \mathrm{C} 47 \end{aligned}$	221678	Mica, $47 \mathrm{mmf}, 10 \%, 500 \mathrm{v}$ CERAMIC DISC $10,000 \mathrm{MMMF}, 5 \%, 500 \mathrm{~V}$ (DILECTRON)
6 Cl 1	230452	Paper, $82,000 \mathrm{mmf}, 10 \%, 200 \mathrm{v}$
6 C 2	230453	Paper, $120,000 \mathrm{mmf}, 10 \%$, 200 v
6 C 3	230451	Paper, 56,000 mmf, $10 \%, 400 \mathrm{v}$
6C4, 6C5	230449	Paper, $100,000 \mathrm{mmf}, 10 \%, 200 \mathrm{v}$
6 C 6	230228	Electrolytic, $250 \mathrm{mfd}, 6 \mathrm{v}$
6C7, 6C7A	217937	Electrolytic, $500 \mathrm{mfd}, 3 \mathrm{v}$
7C1, 7C2	230229	Electrolytic, $150 \mathrm{mfd}, 300 \mathrm{v}$
7 C 3	230230	Electrolytic, $80 \mathrm{mfd}, 350 \mathrm{v}$
7C4, 7 C 5	98180	Electrolytic, $1500 \mathrm{mfd}, 50 \mathrm{v}$
7 C 6	230251	Electrolytic, $150 \times 150 \mathrm{mfd}, 250 \mathrm{v}$
$7 \mathrm{C} 7 \mathrm{~A}, 7 \mathrm{C} 7 \mathrm{~B}$	230233	Electrolytic, $160 \mathrm{mfd}, 300 \mathrm{v}$
$\begin{aligned} & 7 \mathrm{C} 8,7 \mathrm{C} 9 \\ & 7 \mathrm{Cl} \text { to } 7 \mathrm{C} 49 \end{aligned}$	73594	Paper, $10,000 \mathrm{mmf}, 20 \%, 600 \mathrm{v}$ Not Used
7 C 50	230231	Electrolytic, $200 \mathrm{mfd}, 12 \mathrm{v}$
7 C 51	224358	Electrolytic, $75 \mathrm{mfd}, 25 \mathrm{v}$
7 C 52	230231	Electrolytic, $200 \mathrm{mfd}, 12 \mathrm{v}$
7 C 53	224358	Electrolytic, $75 \mathrm{mfd}, 25 \mathrm{v}$
8 Cl 1	73595	Paper, $2200 \mathrm{mmf}, 20 \%$, 600 v
8 C 2	73594	Paper, $10,000 \mathrm{mmf}, 10 \%, 600 \mathrm{v}$
8 C 3	300186	Mica, $180 \mathrm{mmf}, 5 \%, 500 \mathrm{v}$
8 C 4 to 8C6	227694	Paper, $1000 \mathrm{mmf}, 10 \%$, 1600 v
8 C 7	76578	Mica, $100 \mathrm{mmf}, 10 \%, 1000 \mathrm{v}$
8 C 8	300196	Mica, $1000 \mathrm{mmf}, 10 \%, 500 \mathrm{v}$
8C9	214466	Electrolytic, $5 \mathrm{mfd}, 150 \mathrm{v}$
		COILS:
1 Ll	230310	Input Compensating
1 L 2	230317	6 uh Nom. Adj. (3.58 mc Trap)
2 Ll		Not Used
2L2, 2 L 3	230318	420 uh Self-Resonant at 3.58 mc
2 L 4	230309	1.3 mh RF Choke
2L5, $2 \mathrm{L6}$	230318	420 uh Self-Resonant at 3.58 mc
2 L 7 to 2L9		Not Used
2L10	230318	420 uh Self-Resonant at 3.58 mc
3 Ll	230316	Interlace
$4 \mathrm{Ll}, 4 \mathrm{~L} 2$	230311	Peaking

Symbol	RCA Stock No.	Description
4 L 3 to 4 L 20		Not Used
4L21, 4L22	230311	Peaking
4 L 23 to 4L40		Not Used
4LA1, 4LA2	230311	Peaking
5 Ll	230315	Width
5 L 2	230314	Linearity/Efficiency
5 L 3	230312	Underscan Tuning
6 Ll	230313	Underscan Convergence
6 L 2	230320	R/G Convergence \#1
6 L 3	230319	R/G Convergence \#2
8L1	109457	Deflection Yoke Assembly
		DIODES:
2Dl to 2D4	230260	Silicon Diode, Switching
2D5, 2D6	230261	Varactor Diode
2D7	221128	Silicon Diode
2D8 to 2D10	219283	Germanium Diode
3Dl to 3D3	219283	Germanium Diode
4 Dl	300315	Silicon Rectifier
6D1 to 6D3	230262	Rectifier Assembly
7D1, 7D2	223357	Silicon Rectifier
7D3 to 7D14	300315	Silicon Rectifier
7D15 to 7D49		Not Used
7 D50	285485	Zener Diode
7 D 51	221128	Silicon Diode
7 D 52	224881	Zener Diode
7 D 53	225592	Silicon Rectifier, Insulated Version of lN3193
7 D 54	285485	Zener Diode
7 D 55	221128	Silicon Diode
7 D 56	224881	Zener Diode
7D57	230263	Zener Diode, $10 \mathrm{w}, 18 \mathrm{v}, 10 \%$
8D1	300315	Silicon Rectifier
		POTENTIOMETERS:
1 Pl	206913	Composition, 1000 ohms (Contrast)
1 P 2	206913	Composition, 1000 ohms (Aperture)
1 P 3	208677	Composition, 5000 ohms (Brightness)
2 Pl	230330	Composition, 500 ohms (Color Hold)
2P2	230321	Composition, 1000 ohms, $\frac{1}{2} \mathrm{w}$ (Manual Chroma)
2 P 3	230333	Comp., 1000 ohms (Unity Chroma Pre-Set)
$\begin{aligned} & \text { 2P4, } 2 \mathrm{P} 5 \\ & 2 \mathrm{P} 6 \end{aligned}$	208677	Composition, 5000 ohms (Green and Blue Gain) Not Used
2P7	208677	Composition, $5000 \mathrm{hms} \mathrm{(Hue)}$

Symbol	$\begin{aligned} & \text { RCA } \\ & \text { Stock No. } \end{aligned}$	Description
3P1, 3P2	230334	Comp., 10,000 ohms (Lead. \& Trail. Edge Pos.)
4 Pl	230335	Composition, 100,000 ohms (Kine Bias)
5 Pl	213201	Composition, 2.5 megohms (Height)
5P2, 5P3	95243	Composition, 100,000 ohms (Bottom \& Top Linearity)
5P4, 5P5	205940	Wire Wound, 10 ohms (Verfical \& Horizontal Centering)
5 P 6	92231	Composition, l megohm (Ultor Voltage Adj.)
5 P 7	68837	Composition, 25,000 ohms (Horizontal Hold)
5 P 8	95243	Composition, 100,000 ohms (Vertical Hold)
6 Pl	230322	Wire Wound, 30 ohms (R-G Diff. Tilt)
6 P 2	230325	Wire Wound, 150 ohms (R-G Diff. Amp.)
6 P 3	230327	Wire Wound, 60 ohms (Right Horizontal Convergence)
6 P4	230327	Wire Wound, 60 ohms (Left Horizontal R-G)
6P5	230327	Wire Wound, 60 ohms (R-G Tilt)
6 P6	230327	Wire Wound, 60 ohms (Blue Tilt)
6 P7	230324	Wire Wound, 120 ohms (Left Blue Horiz.)
6 P8	230326	Wire Wound, 3000 ohms (R-G Diff. Position)
$6 \mathrm{P9}$	95245	Composition, 250 ohms (R-G Amp.)
6 Pl 0	230323	Wire Wound, 50 ohms (Blue Amp.)
6P11, 6P12	208677	Composition, 5000 ohms (R-G Pos. and R-G Pos. Underscan)
6P13, 6P14	208677	Composition, 5000 ohms (Blue Pos. and Blue Pos. Underscan)
7 Pl	230332	Composition, 50,000 ohms (200 Volt Adj.)
7P2, 7 P 3	230331	Wire Wound, $100 \mathrm{hms} \mathrm{(-15} \mathrm{Volt} \mathrm{Adj} .\mathrm{\&} \mathrm{+} 15$ Volt Adj.)
8 Pl to 8P3	95242	Composition, 1 megohm (Blue, Green, and Red Screen)
		RESISTORS: Fixed, Composition - Unless Otherwise Specified
1R1	212767	75 ohms, 1\%, $\frac{1}{2} \mathrm{w}$
1R2	502322	22,000 ohms, 10%, $\frac{1}{2}$ w
1R3	502427	270,000 ohms, 5\%, $\frac{1}{2}$ w
1R4	502418	180,000 ohms, 10%, $\frac{1}{2} \mathrm{w}$
1 R5	502168	680 ohms, 5\%, $\frac{1}{2}$ w
1R6	502147	470 ohms, 5\%, $\frac{1}{2} \mathrm{w}$
1R7	502110	100 ohms, 10%, $\frac{1}{2} \mathrm{w}$
1R8		Not Used
1R9	502127	270 ohms, 5\%, $\frac{1}{2} \mathrm{w}$
1R10	502327	27,000 ohms, 5\%, $\frac{1}{2} \mathrm{w}$
1R11	502247	4700 ohms, 5\%, $\frac{1}{2} \mathrm{w}$
1R12	502210	1000 ohms, 10%, $\frac{1}{2} \mathrm{w}$
1R13	502110	100 ohms, 5\%, $\frac{1}{2} \mathrm{w}$
1R14	502156	560 ohms, 5\%, $\frac{1}{2} \mathrm{w}$
1R15	502047	47 ohms, 10%, $\frac{1}{2}$ w
1R16	502222	2200 ohms, $5 \%, \frac{1}{2} \mathrm{w}$
1R17	502210	1000 ohms, 5%, $\frac{1}{2} \mathrm{w}$
1R18	502147	470 ohms, 5%, $\frac{1}{2} \mathrm{w}$
1R19	502310	10,000 ohms, 10%, $\frac{1}{2} \mathrm{w}$
1R20	502233	3300 ohms, 10%, $\frac{1}{2} \mathrm{w}$
1R21	502439	390,000 ohms, 5%, $\frac{1}{2} \mathrm{w}$

Symbol	$\begin{gathered} \text { RCA } \\ \text { Stock No. } \end{gathered}$	Description
1R22	502127	270 ohms, $5 \%, \frac{1}{2} \mathrm{w}$
1R23	255839	3320 ohms, $1 \%, 1 / 4 \mathrm{w}$
1 R 24	258744	1000 ohms, $1 \%, 1 / 4 \mathrm{w}$
1R25	224154	182 ohms, $1 \%, 1 / 4 \mathrm{w}$
1 R 26	502156	$560 \mathrm{ohms}, 5 \%, \frac{1}{2} \mathrm{w}$
1 R 27	502227	2700 ohms, 10%, $\frac{1}{2} \mathrm{w}$
1 R 28	502210	1000 ohms, 10%, $\frac{1}{2} \mathrm{w}$
1R29	502210	1000 ohms, $5 \%, \frac{1}{2} \mathrm{w}$
1R30	502147	470 ohms, 5%, $\frac{1}{2} \mathrm{w}$
1R31	230265	475 ohms, $1 \%, 1 / 4 \mathrm{w}$
1R32, 1R33	230274	249 ohms, 1\%, 1/4 w
1R34	213694	150 ohms, $1 \%, 1 / 4 \mathrm{w}$
1R35	230266	332 ohms, 1\%, 1/4 w
1R36	257841	1820 ohms, $1 \%, 1 / 4 \mathrm{w}$
1R37	258744	1000 ohms, $1 \%, 1 / 4 \mathrm{w}$
1R38	213694	150 ohms, $1 \%, 1 / 4 \mathrm{w}$
1 R 39	255839	3320 ohms, $1 \%, 1 / 4 \mathrm{w}$
1 R 40	502147	470 ohms, 5%, $\frac{1}{2} \mathrm{w}$
1R41		Not Used
1R42	502133	330 ohms, 5\%, $\frac{1}{2} \mathrm{w}$
1 R 43	502210	1000 ohms, 5%, $\frac{1}{2}$ w
1R44	502118	180 ohms, $5 \%, \frac{1}{2} \mathrm{w}$
1 R 45	502122	220 ohms, 5\%, $\frac{1}{2}$ w
1R46	502010	10 ohms, 10%, $\frac{1}{2} \mathrm{w}$
1R47	502239	3900 ohms, $10 \%, \frac{1}{2} \mathrm{w}$
1R48	502322	22,000 ohms, $10 \%, \frac{1}{2} \mathrm{w}$
1R49	258744	1000 ohms, $1 \%, 1 / 4 \mathrm{w}$
1R50		Not Used
1R51	258744	1000 ohms, $1 \%, 1 / 4 \mathrm{w}$
1R52	502222	2200 ohms, $10 \%, \frac{1}{2} \mathrm{w}$
1R53		Not Used
1 1R54	502215	1500 ohms, 10%, $\frac{1}{2} \mathrm{w}$
1 1R55	502047	47 ohms, 10%, $\frac{1}{2}$ w
1 R 56	502168	680 ohms, $5 \%, \frac{1}{2} \mathrm{w}$
1 R 57	502210	1000 ohms, 10%, $\frac{1}{2} \mathrm{w}$
2R1		Not Used
2R2	502327	27,000 ohms, 10%, $\frac{1}{2} \mathrm{w}$
2R3	502310	10,000 ohms, $10 \%, \frac{1}{2} \mathrm{w}$
2R4	502247	4700 ohms, $10 \%, \frac{1}{2} \mathrm{w}$
2R5	502091	91 ohms, 5%, $\frac{1}{2} \mathrm{w}$
2R6	502212	1200 Ohms, 10%, $\frac{1}{2} \mathrm{w}$
2R7, 2R8	502233	3300 ohms, 10%, $\frac{1}{2} \mathrm{w}$
2R9	230276	90.6 ohms, $1 \%, 1 / 4 \mathrm{w}$
2R 10		Not Used
2R11	502322	22,000 ohms, $10 \%, \frac{1}{2} \mathrm{w}$
2R12		Not Used
2R13	502322	22,000 ohms, $10 \%, \frac{1}{2} \mathrm{w}$
2R14	255837	100 ohms, $1 \%, 1 / 4 \mathrm{w}$
2R15, 2R16	502133	$330 \mathrm{ohms}, 10 \%, \frac{1}{2} \mathrm{w}$
2R17	502156	560 ohms, $5 \%, \frac{1}{2} \mathrm{w}$
2R18	502333	33,000 ohms, $10 \%, \frac{1}{2} \mathrm{w}$

Symbol	RCA Stock No.	
2R19	502239	3900 ohms, 10%, $\frac{1}{2}$ w
2R 20	502339	39,000 ohms, 5\%, $\frac{1}{2} \mathrm{w}$
2R21	502233	3300 ohms, 10%, $\frac{1}{2}$ w
2R 22	502282	8200 ohms, 5\%, $\frac{1}{2}$ w
2R23	502522	2.2 megohms, $10 \%, \frac{1}{2} \mathrm{w}$
2R24 to 2R26		Not Used
2R 27	502375	75,000 ohms, 5\%, $\frac{1}{2} \mathrm{w}$
2R28	502218	1800 ohms, 5\%, $\frac{1}{2} \mathrm{w}$
2R29	502118	180 ohms, 5\%, $\frac{1}{2}$ w
2R 30	502310	10,000 ohms, 5%, $\frac{1}{2} \mathrm{w}$
2R31	502218	1800 ohms, 5\%, $\frac{1}{2} \mathrm{w}$
2R32	502127	270 ohms, $5 \%, \frac{1}{2} \mathrm{w}$
2R33	502268	6800 ohms, 10%, $\frac{1}{2}$ w
2R 34	502368	68,000 ohms, $5 \%, \frac{1}{2} \mathrm{w}$
2R35	502256	5600 ohms, 5\%, $\frac{1}{2} \mathrm{w}$
2R36	502282	8200 ohms, 5\%, $\frac{1}{2}$ w
2R37	502327	27,000 ohms, 10%, $\frac{1}{2} \mathrm{w}$
2R38	502227	2700 ohms, 5\%, $\frac{1}{2} \mathrm{w}$
2R39, 2R40	502410	100,000 ohms, 10\%, $\frac{1}{2} \mathrm{w}$
2R41	502147	470 ohms, 10%, $\frac{1}{2} \mathrm{w}$
2R42	502127	270 ohms, 5\%, $\frac{1}{2}$ w
2R43	502347	47,000 ohms, 10%, $\frac{1}{2} \mathrm{w}$
2R44	502310	10,000 ohms, 10%, $\frac{1}{2} \mathrm{w}$
2R45	502322	22,000 ohms, 10%, $\frac{1}{2}$ w
2R46	502227	2700 ohms, 10%, $\frac{1}{2} \mathrm{w}$
2R47	502127	270 ohms, 10\%, $\frac{1}{2}$ w
2R48	502322	22,000 ohms, $10 \%, \frac{1}{2} \mathrm{w}$
2R49	502215	1500 ohms, 10%, $\frac{1}{2} \mathrm{w}$
2R50	502115	150 ohms, 10%, $\frac{1}{2} \mathrm{w}$
2R51	502127	270 ohms, 10%, $\frac{1}{2} \mathrm{w}$
2R52		Not Used
2R53	502227	2700 ohms, 10%, $\frac{1}{2}$ w
2R54	502268	6800 ohms, 10%, $\frac{1}{2} \mathrm{w}$
2R55	502156	560 ohms, 5\%, $\frac{1}{2} \mathrm{w}$
2R56	502412	120,000 ohms, 5\%, $\frac{1}{2} \mathrm{w}$
2R57	502256	5600 ohms, 10%, $\frac{1}{2} \mathrm{w}$
2R58	502268	6800 ohms, 5\%, $\frac{1}{2} \mathrm{w}$
2R59	502118	180 ohms, 5\%, $\frac{1}{2} \mathrm{w}$
2R60	502175	750 ohms, 5\%, $\frac{1}{2} \mathrm{w}$
2R61, 2R62	502410	100,000 ohms, $10 \%, \frac{1}{2} \mathrm{w}$
2R63	502310	10,000 ohms, $10 \% ; \frac{1}{2} \mathrm{w}$
2R64		Not Used
2R65	502233	3300 ohms, 10\%, $\frac{1}{2}$ w
2R66	502247	4700 ohms, 10%, $\frac{1}{2} \mathrm{w}$
2R67	502233	3300 ohms, 10%, $\frac{1}{2} \mathrm{w}$
2R68	502310	10,000 ohms, 10%, $\frac{1}{2} \mathrm{w}$ Not Used
2R70	502439	390,000 ohms, 5%, $\frac{1}{2} \mathrm{w}$
2R71	502239	3900 ohms, 5\%, $\frac{1}{2} \mathrm{w}$
2R72	502139	390 ohms, 10%, $\frac{1}{2} \mathrm{w}$
2R73	502268	6800 ohms, 5%, $\frac{1}{2} \mathrm{w}$
2R74	502418	180,000 ohms, 5\%, $\frac{1}{2} \mathrm{w}$
2R75	230265	475 ohms, $1 \%, 1 / 4 \mathrm{w}$

Symbol	RCA Stock No.	
2R76	230273	751 ohms, $1 \%, 1 / 4 \mathrm{w}$
2R77	502247	4700 ohms, 5%, $\frac{1}{2} \mathrm{w}$
2R78, 2R79	502327	27,000 ohms, $5 \%, \frac{1}{2} \mathrm{w}$
2R 80	502218	1800 ohms, 5%, $\frac{1}{2} \mathrm{w}$
2R 81	502468	680,000 ohms, 5%, $\frac{1}{2} \mathrm{w}$
2R 82	502268	6800 ohms, 10%, $\frac{1}{2} \mathrm{w}$
2R 83	502110	100 ohms, 5%, $\frac{1}{2} \mathrm{w}$
2R 84	502422	220,000 ohms, 5%, $\frac{1}{2} \mathrm{w}$
2R85	229833	825 ohms, 1\%, 1/4 w
2R 86	230268	2740 ohms, $1 \%, 1 / 4 \mathrm{w}$
2R 87	502310	10,000 ohms, 5\%, $\frac{1}{2} \mathrm{w}$
2R 88		Not Used
2R 89	502247	4700 ohms, 5%, $\frac{1}{2} \mathrm{w}$
2R90, 2R91	502327	27,000 ohms, 5\%, $\frac{1}{2} \mathrm{w}$
2R92	502227	2700 ohms, 10%, $\frac{1}{2} \mathrm{w}$
2R93	230269	3740 ohms, 1%, $1 / 4 \mathrm{w}$
2R 94	260040	10,000 ohms, $1 \%, 1 / 4 \mathrm{w}$
2R95	256028	22,100 ohms, $1 \%, 1 / 4 \mathrm{w}$
2R 96	502411	110,000 ohms, $5 \%, \frac{1}{2} \mathrm{w}$
2R97	224870	47,500 ohms, $1 \%, 1 / 4 \mathrm{w}$
2R98	229833	825 ohms, 1\%, 1/4 w
2R99	213701	8250 ohms, $1 \%, 1 / 4 \mathrm{w}$
2R 100	229833	825 ohms, 1\%, 1/4 w
2R101, 2R102	260040	10,000 ohms, $1 \%, 1 / 4 \mathrm{w}$
2R 103	502222	2200 ohms, 5%, $\frac{1}{2} \mathrm{w}$
$\begin{aligned} & \text { 2R104, 2R105 } \\ & \text { 2R 106 } \end{aligned}$	260040	$10,000 \text { ohms }, 1 \%, 1 / 4 \mathrm{w}$ Not Used
$\begin{aligned} & \text { 2R } 107, \text { 2R108 } \\ & \text { 2R } 109 \end{aligned}$	260040	$10,000 \text { ohms, } 1 \%, 1 / 4 \mathrm{w}$ Not Used
2R110	502339	39,000 ohms, 5%, $\frac{1}{2} \mathrm{w}$
2R111	502310	10,000 ohms, $5 \%, \frac{1}{2} \mathrm{w}$
2R 112	502118	180 ohms, 5\%, $\frac{1}{2}$ w
2R113	502156	560 ohms, 5%, $\frac{1}{2} \mathrm{w}$
2R114	502039	39 ohms, 5\%, $\frac{1}{2} \mathrm{w}$
2R115	502168	680 ohms, 5%, $\frac{1}{2} \mathrm{w}$
2R116	502315	15,000 ohms, $5 \%, \frac{1}{2} \mathrm{w}$
2R117, 2R118	502212	1200 ohms, 5%, $\frac{1}{2} \mathrm{w}$
2R119		Not Used
2R 120	502115	150 ohms, 5%, $\frac{1}{2} \mathrm{w}$
2R121	502339	39,000 ohms, $5 \%, \frac{1}{2} \mathrm{w}$
2R122	502310	10,000 ohms, $5 \%, \frac{1}{2} \mathrm{w}$
2R123	502118	180 ohms, $5 \%, \frac{1}{2} \mathrm{w}$
2R 124	502156	560 ohms, 5%, $\frac{1}{2} \mathrm{w}$
2R 125	502039	39 ohms, $5 \%, \frac{1}{2} \mathrm{w}$
2R126	502168	680 ohms, 5%, $\frac{1}{2} \mathrm{w}$
2R127	502315	15,000 ohms, $5 \%, \frac{1}{2} \mathrm{w}$
2R128, 2R129	502212	$1200 \text { ohms, } 5 \%, \frac{1}{2} \mathrm{w}$
2R131	502115	150 ohms, 5%, $\frac{1}{2} \mathrm{w}$
2R 132	502339	39,000 ohms, $5 \%, \frac{1}{2} \mathrm{w}$
2R133	502310	10,000 ohms, 5%, $\frac{1}{2} \mathrm{w}$
2R 134	502118	180 ohms, 5%, $\frac{1}{2}$ w
2R 135	502156	560 ohms, 5%, $\frac{1}{2} \mathrm{w}$

Symbol	$\begin{gathered} \text { RCA } \\ \text { Stock No. } \end{gathered}$	
2R 136	502039	39 ohms, 5\%, $\frac{1}{2}$ w
2R137	502168	680 ohms, 5%, $\frac{1}{2}$ w
2R138	502315	15,000 ohms, 5\%, $\frac{1}{2} \mathrm{w}$
2R139, 2R 140	502212	1200 ohms, 5%, $\frac{1}{2} \mathrm{w}$
2R141		Not Used
2R 142	502115	150 ohms, 5\%, $\frac{1}{2}$ w
2R143		Not Used
2R144, 2R145	502212	1200 ohms, 10%, $\frac{1}{2} \mathrm{w}$
2R146, 2R147	502210	1000 ohms, 5\%, $\frac{1}{2} \mathrm{w}$
2R148	502310	10,000 ohms, 10%, $\frac{1}{2}$ w
2R149, 2R150		Not Used
2R151	502227	2700 ohms, 10%, $\frac{1}{2}$ w
2R152	502210	1000 ohms, 10%, $\frac{1}{2} \mathrm{w}$
2R153, 2R154	502256	5600 ohms, 5\%, $\frac{1}{2} \mathrm{w}$
2R155, 2R156	502210	1000 ohms, 5\%, $\frac{1}{2} \mathrm{w}$
2R157	502310	10,000 ohms, 10%, $\frac{1}{2} \mathrm{w}$
2R158	502239	3900 ohms, 10%, $\frac{1}{2}$ w
2R159	502410	100,000 ohms, 10%, $\frac{1}{2} \mathrm{w}$
2R160	502318	18,000 ohms, 10%, $\frac{1}{2}$ w
2R161	502412	120,000 ohms, 10%, $\frac{1}{2} \mathrm{w}$
2R162	502447	470,000 ohms, $10 \%, \frac{1}{2} \mathrm{w}$
2R163	502110	100 ohms, $10 \%, \frac{1}{2} \mathrm{w}$
3 Rl		Not Used
3 R 2	502368	68,000 ohms, 10%, $\frac{1}{2} \mathrm{w}$
3R3	502410	100,000 ohms, 10%, $\frac{1}{2} \mathrm{w}$
3R4	502347	47,000 ohms, 10%, $\frac{1}{2} \mathrm{w}$
3R5	502222	2.200 ohms, $10 \%, \frac{1}{2} \mathrm{w}$
3R6, 3R7	502310	10,000 ohms, 10%, $\frac{1}{2} \mathrm{w}$
3R8	502247	4700 ohms, 10%, $\frac{1}{2}$ w
3R9	502415	150,000 ohms, 10%, $\frac{1}{2} \mathrm{w}$
3R10	502310	10,000 ohms, $5 \%, \frac{1}{2} \mathrm{w}$
3R11	502215	1500 ohms, $5 \%, \frac{1}{2} \mathrm{w}$
3R12	502315	15,000 ohms, 5\%, $\frac{1}{2} \mathrm{w}$
3R13	502415	150,000 ohms, 5%, $\frac{1}{2}$ w
3R14	502322	22,000 ohms, 5\%, $\frac{1}{2}$ w
3R15	502310	10,000 ohms, 10%, $\frac{1}{2}$ w
3R16	502222	2200 ohms, 10%, $\frac{1}{2} \mathrm{w}$
3R17	502110	100 ohms, 5\%, $\frac{1}{2}$ w
3R18	502439	390,000 ohms, 5\%, $\frac{1}{2}$ w
3R19	502239	3900 ohms, 5\%, $\frac{1}{2} \mathrm{w}$
3 R 20	502210	1000 ohms, 5\%, $\frac{1}{2} \mathrm{w}$
3R21	502356	56,000 ohms, 5\%, $\frac{1}{2} \mathrm{w}$
3R22	502222	2200 ohms, 10%, $\frac{1}{2}$ w
3R23, 3R24	502247	4700 ohms, 10%, $\frac{1}{2}$ w
3R25	502210	1000 ohms, 10%, $\frac{1}{2} \mathrm{w}$
3R26	502110	100 ohms, 10\%, $\frac{1}{2}$ w
3R27	502210	1000 ohms, 10%, $\frac{1}{2} \mathrm{w}$
3R28	502339	39,000 ohms, $5 \%, \frac{1}{2} \mathrm{w}$
3R29		Not Used
3R30	230270	15,000 ohms, 1%, $1 / 4 \mathrm{w}$
3R31	502110	100 ohms, 10%, $\frac{1}{2} \mathrm{w}$
3R32	502233	3300 ohms, 10%, $\frac{1}{2}$ w

Symbol	RCA Stock No.	Description
3R33	255839	3320 ohms, 1\%, 1/4 w
3R34	258744	1000 ohms, $1 \%, 1 / 4 \mathrm{w}$
3R35	502139	390 ohms, $10 \%, \frac{1}{2} \mathrm{w}$
3R36	502210	1000 ohms, $5 \%, \frac{1}{2} \mathrm{w}$
3R37		Not Used
3R38	502047	47 ohms, $10 \%, \frac{1}{2} \mathrm{w}$
3R39	502115	150 ohms, $10 \%, \frac{1}{2} \mathrm{w}$
3R40	502110	100 ohms, 10%, $\frac{1}{2} \mathrm{w}$
3 R 41	502322	22,000 ohms, 5\%, $\frac{1}{2} \mathrm{w}$
3R42	502310	10,000 ohms, 5%, $\frac{1}{2} \mathrm{w}$
3R43	502327	27,000 ohms, 10%, $\frac{1}{2} \mathrm{w}$
3R44	502310	10,000 ohms, 10%, $\frac{1}{2} \mathrm{w}$
3R45	502115	150 ohms, $10 \%, \frac{1}{2} \mathrm{w}$
3R46	502147	470 ohms, 10%, $\frac{1}{2} \mathrm{w}$
3R47	502212	1200 ohms, 10%, $\frac{1}{2} \mathrm{w}$
3R48	502210	1000 ohms, 10%, $\frac{1}{2}$ w
3R49	230270	15,000 ohms, $1 \%, 1 / 4 \mathrm{w}$
3R50		Not Used
3R51	502233	3300 ohms, 10%, $\frac{1}{2} \mathrm{w}$
3R52	255839	3320 ohms, 1\%, l/4 w
3R53	258744	1000 ohms, $1 \%, \mathrm{l} / 4 \mathrm{w}$
3R54	502210	1000 ohms, 5\%, $\frac{1}{2} \mathrm{w}$
3R55		Not Used
3 R 56	502110	100 ohms, 10\%, $\frac{1}{2} \mathrm{w}$
3R57	502310	10,000 ohms, 10%, $\frac{1}{2} \mathrm{w}$
3R58	502333	33,000 ohms, 10%, $\frac{1}{2} \mathrm{w}$
3R59	502233	3300 ohms, 10%, $\frac{1}{2} \mathrm{w}$
3R60	502210	1000 ohms, 10%, $\frac{1}{2} \mathrm{w}$
3 R 61	502310	10,000 ohms, 10%, $\frac{1}{2} \mathrm{w}$
3R62	502333	33,000 ohms, 10%, $\frac{1}{2}$ w
3R63, 3R64	502210	1000 ohms, 10%, $\frac{1}{2} \mathrm{w}$
3R65	502456	560,000 ohms, 5\%, $\frac{1}{2} \mathrm{w}$
3R66	502110	$100 \mathrm{ohms}, 5 \%$, $\frac{1}{2} \mathrm{w}$
4 Rl		Not Used
4 R 2	502218	1800 ohms, 10%, $\frac{1}{2} \mathrm{w}$
4R3	502310	10,000 ohms, 10%, $\frac{1}{2} \mathrm{w}$
4R4	502610	$10 \mathrm{megohms}, 10 \%$, $\frac{1}{2} \mathrm{w}$
4R5	502422	220,000 ohms, 10%, $\frac{1}{2} \mathrm{w}$
4R6	502539	3.9 megohms, 10%, $\frac{1}{2} \mathrm{w}$
4R7	230271	3000 ohms, 5\%, 4 w
4R8	502110	100 ohms, 10%, $\frac{1}{2} \mathrm{w}$
4R9	502118	180 ohms, 5\%, $\frac{1}{2} \mathrm{w}$
4R 10	502322	22,000 ohms, 10%, $\frac{1}{2}$ w
4R11	522318	18,000 ohms, 5\%, 2 w
4 R 12	53366	Wire Wound, 2000 ohms, 10%, 10 w
4 R 13		Not Used
4R14	502510	$1 \mathrm{megohm}, 10 \%$, $\frac{1}{2} \mathrm{w}$
4R 15	512233	3300 ohms, 10%, l w
4R 16	512375	75,000 ohms, 5\%, l w
4 R 17	502122	220 ohms, 10%, $\frac{1}{2} \mathrm{w}$
4R 18	522310	10,000 ohms, 10%, 2 w
4R19	502447	470,000 ohms, 10%, $\frac{1}{2} \mathrm{w}$

Symbol	$\begin{gathered} \text { RCA } \\ \text { Stock No. } \end{gathered}$	
4R20	502333	33,000 ohms, 10%, $\frac{1}{2} \mathrm{w}$
4R21		Not Used
4R 22	502218	1800 ohms, 10%, $\frac{1}{2} \mathrm{w}$
4R23	502310	, 10,000 ohms, 10%, $\frac{1}{2}$ w
4R24	502610	10 megohms, 10%, $\frac{1}{2} \mathrm{w}$
4R25	502422	220,000 ohms, 10%, $\frac{1}{2} \mathrm{w}$
4R26	502539	3.9 megohms, 10%, $\frac{1}{2} \mathrm{w}$
4R27	230271	3000 ohms, 5\%, 4 w
4R 28	502110	100 ohms, 10%, $\frac{1}{2} \mathrm{w}$
4R29	502118	180 ohms, 5\%, $\frac{1}{2}$ w
4R 30	502322	22,000 ohms, 10%, $\frac{1}{2} . \mathrm{w}$
4R31	502310	10,000 ohms, 5%, $\frac{1}{2}$ w
4 R 32 to 4R41		Not Used
4R42	502218	1800 ohms, 10%, $\frac{1}{2} \mathrm{w}$
4R43	502310	10,000 ohms, 10%, $\frac{1}{2} \mathrm{w}$
4R44	502610	10 megohms, 10%, $\frac{1}{2} \mathrm{w}$
4R45	502422	220,000 ohms, 10%, $\frac{1}{2} \mathrm{w}$
4R46	502539	3.9 megohms, 10%, $\frac{1}{2}$ w
4R47	230271	3000 ohms, 5\%, 4 w
4R48	502110	100 ohms, 10%, $\frac{1}{2} \mathrm{w}$
4R49	502118	180 ohms, $5 \%, \frac{1}{2} \mathrm{w}$
4R50	502322	22,000 ohms, 10%, $\frac{1}{2} \mathrm{w}$
4R51	502310	10,000 ohms, $5 \%, \frac{1}{2}$ w
4 R 52 to 4R70		Not Used
4R7 1	502310	10,000 ohms, 5%, $\frac{1}{2} \mathrm{w}$
5 Rl	502368	68,000 ohms, $5 \%, \frac{1}{2} \mathrm{w}$
5 R 2	502210	1000 ohms, 10%, $\frac{1}{2} \mathrm{w}$
5 R 3	502215	1500 ohms, 10%, $\frac{1}{2} \mathrm{w}$
5R4		Not Used
5R5	502368	68,000 ohms, 5%, $\frac{1}{2}$ w
5R6	502210	1000 ohms, 10%, $\frac{1}{2} \mathrm{w}$
5 R 7	502051	51 ohms, 5%, $\frac{1}{2} \mathrm{w}$
5R8	502156	560 ohms, $5 \%, \frac{1}{2} \mathrm{w}$
5R9	502310	10,000 ohms, $10 \%, \frac{1}{2} \mathrm{w}$
5 R10	502210	1000 ohms, 10%, $\frac{1}{2}$ w
5 R 11		Not Used
5R12	502522	2.2 megohms, 10\%, $\frac{1}{2}$ w
5 R 13	502482	820,000 ohms, 10%, $\frac{1}{2} \mathrm{w}$
5R14	502518	1.8 megohms, 10%, $\frac{1}{2}$ w
5R15	502436	360,000 ohms, 5%, $\frac{1}{2} \mathrm{w}$
5 R 16	502410	100,000 ohms, 5%, $\frac{1}{2} \mathrm{w}$
5 R 17	502412	120,000 ohms, 10%, $\frac{1}{2} \mathrm{w}$
5R18	502347	47,000 ohms, $10 \%, \frac{1}{2} \mathrm{w}$
5R19	502210	1000 ohms, 10%, $\frac{1}{2} \mathrm{w}$
5R20, 5R21	213756	10,000 ohms, $10 \%, 3 \mathrm{w}$
5R22	112980	3900 ohms, 10%, 4 w
5 R 23	502356	56,000 ohms, 10%, $\frac{1}{2} \mathrm{w}$
5R24	512433	330,000 ohms, 10%, 1 w
5R25	502310	10,000 ohms, $10 \%, \frac{1}{2} \mathrm{w}$
5R26	502439	390,000 ohms, 10%, $\frac{1}{2} \mathrm{w}$
5R27	502368	68,000 ohms, 10%, $\frac{1}{2}$ w
5R28	502410	100,000 ohms, $10 \%, \frac{1}{2} \mathrm{w}$

Symbol	RCA Stock No.	Description
5R29	502356	56,000 ohms, 10%, $\frac{1}{2}$ w
5R30, 5R31	502439	390,000 ohms, 10%, $\frac{1}{2} \mathrm{w}$
5R32	502456	560,000 ohms, 10%, $\frac{1}{2} \mathrm{w}$
5R33	502210	1000 ohms, 10%, $\frac{1}{2} \mathrm{w}$
5R34	502322	22,000 ohms, 10%, $\frac{1}{2} \mathrm{w}$
5R35	512415	150,000 ohms, 10%, 1 w
5 R 36	502418	180,000 ohms, 10%, $\frac{1}{2} \mathrm{w}$
5R37	502368	68,000 ohms, 10%, $\frac{1}{2} \mathrm{w}$
5R38	502333	33,000 ohms , 10%, $\frac{1}{2}$ w
5R39	502327	27,000 ohms, 10%, $\frac{1}{2} \mathrm{w}$
5 R 40	502411	110,000 ohms, 5%, $\frac{1}{2} \mathrm{w}$
5 R 41	502610	$10 \mathrm{megohms}, 10 \%, \frac{1}{2} \mathrm{w}$
5 R 42	502110	100 ohms, 10%, $\frac{1}{2} \mathrm{w}$
5R43	502047	47 ohms, 10%, $\frac{1}{2} \mathrm{w}$
5R44	254104	$1 \mathrm{ohm}, 1 \%$, $\frac{1}{2} \mathrm{w}$
5R45	213160	Wire Wound, 13,000 ohms, $10 \%, 10 \mathrm{w}$
5R46	230264	3.9 ohms, $10 \%, \frac{1}{2} \mathrm{w}$
5 R 47	522547	4.7 megohms, $10 \%, 2 \mathrm{w}$
5 R 48	512515	1.5 megohms, 5\%, $\frac{1}{2} \mathrm{w}$
5R49	502510	$1 \mathrm{megohm}, 10 \%$, $\frac{1}{2} \mathrm{w}$
5R50	522247	4700 ohms, $10 \%, 2 \mathrm{w}$
5R51	255837	100 ohms, $1 \%, 1 / 4 \mathrm{w}$
5R52	230521	4990 ohms, $1 \%, 1 / 4 \mathrm{w}$
5R53	230347	Film, 47 megohms, 20\%
5R54	502312	12,000 ohms, 10%, $\frac{1}{2}$ w
$\left\lvert\, \begin{aligned} & 5 R 55 \\ & 5 R 56 \end{aligned}\right.$	522268 502410	6800 ohms, $10 \%, 2 \mathrm{~W}, 1 / 2 \mathrm{~W}$ 100,000 oHMS, 100%, 580
6R1	512139	350 ohms, $10 \%, 1 \mathrm{w}$
6R2 to 6R4	512110	100 ohms, 10%, 1 w
6R5	512118	180 ohms, 10%, 1 w
6R6	502233	3300 ohms, $10 \%, \frac{1}{2} \mathrm{w}$
6R7	502047	47 ohms, $10 \%, \frac{1}{2} \mathrm{w}$
6R 8	502122	220 ohms, 10%, $\frac{1}{2} \mathrm{w}$
6R9	502068	68 ohms, 10%, $\frac{1}{2} \mathrm{w}$
6 R 10	502212	1200 ohms, $10 \%, \frac{1}{2} \mathrm{w}$
6 R11	502215	1500 ohms, 10%, $\frac{1}{2} \mathrm{w}$
6 R 12	512047	47 ohms, 10%, 1 w
6R 13	512027	27 ohms, 10\%, 1 w
7R1, 7R2	921227	Wire Wound, 5 ohms, $10 \%, 10 \mathrm{w}$
7R3, 7R4	230272	Wire Wound, 5 ohms, $10 \%, 7 \mathrm{w}$
7 R 5	300548	Wire Wound, 1000 ohms, $10 \%, 30 \mathrm{w}$
7 R 6		Not Used
7 R 7	502415	150,000 ohms, 10%, $\frac{1}{2} \mathrm{w}$
7R8	502410	100,000 ohms, 10%, $\frac{1}{2} \mathrm{w}$
7R9 to 7R11	502110	100 ohms, $10 \%, \frac{1}{2} \mathrm{w}$
7 R12	502422	220,000 ohms, 10%, $\frac{1}{2} \mathrm{w}$
7R13, 7R14	230267	200,000 ohms, 1\%, $\frac{1}{2}$ w
7 R 15		Not Used
7 R16	502447	470,000 ohms, 10%, $\frac{1}{2} \mathrm{w}$
7 R 17	502110	100 ohms, $10 \%, \frac{1}{2} \mathrm{w}$
7 R18	502210	1000 ohms, 10%, $\frac{1}{2} \mathrm{w}$
7 R 19	512247	4700 ohms, $10 \%, 1 \mathrm{w}$

Symbol	$\begin{gathered} \text { RCA } \\ \text { Stock No. } \end{gathered}$	Description
7R20	522315	15,000 ohms, $10 \%, 2 \mathrm{w}$
7 R21	502362	62,000 ohms, 5\%, $\frac{1}{2} \mathrm{w}$
7 R 22	502422	220,000 ohms, 10%, $\frac{1}{2} \mathrm{w}$
7R23	502351	51,000 ohms, $5 \%, \frac{1}{2} \mathrm{w}$
7 R 24	512416	160,000 ohms, 5%, l w
7 R 25	502410	100,000 ohms, $10 \%, \frac{1}{2} \mathrm{w}$
7 R 26 to 7R49		Not Used
7 R 50	502212	1200 ohms, 10%, $\frac{1}{2} \mathrm{w}$
7R51	502215	1500 ohms, 10%, $\frac{1}{2} \mathrm{w}$
7 R 52	502233	3300 ohms, 10%, $\frac{1}{2} \mathrm{w}$
7 R 53	502110	100 ohms, 10%, $\frac{1}{2} \mathrm{w}$
7R54	113152	. $47 \mathrm{ohm}, 5 \%$, $\frac{1}{2} \mathrm{w}$
7 R 55	502215	1500 ohms, 10%, $\frac{1}{2} \mathrm{w}$
7 R 56	502122	220 ohms, 10%, $\frac{1}{2} \mathrm{w}$
7 R 57	502168	680 ohms, 5%, $\frac{1}{2}$ w
7R58	502227	2700 ohms, 10%, $\frac{1}{2} \mathrm{w}$
7R59, 7R60	502212	1200 ohms, 10\%, $\frac{1}{2} \mathrm{w}$
7 R 61	230265	475 ohms, 1\%, l/4 w
7 R 62		Not Used
7R63	230275	221 ohms, 1\%, 1/4 w
7 R 64	502212	1200 ohms, 10%, $\frac{1}{2} \mathrm{w}$
7 R 65	502215	1500 ohms, 10%, $\frac{1}{2} \mathrm{w}$
7 R 66	502233	3300 ohms, 10%, $\frac{1}{2} \mathrm{w}$
7 R 67	502110	100 ohms, 10%, $\frac{1}{2} \mathrm{w}$
7 R 68	113152	. 47 ohm, 5\%, $\frac{1}{2}$ w
7 R 69	502215	1500 ohms, 10%, $\frac{1}{2} \mathrm{w}$
7 R 70	502122	220 ohms, 10%, $\frac{1}{2} \mathrm{w}$
7R71	502168	680 ohms, 5%, $\frac{1}{2} \mathrm{w}$
7 R72	502227	2700 ohms, 10%, $\frac{1}{2} \mathrm{w}$
7R73, 7R74	502212	1200 ohms, 10%, $\frac{1}{2} \mathrm{w}$
7R75	230265	475 ohms, l\%, l/4 w
7 R 76		Not Used
7R77	230275	221 ohms, 1\%, l/4 w
7R78	502410	100,000 ohms, 10%, $\frac{1}{2} \mathrm{w}$
7R79	230277	Regulator - CRT Filaments
7 R 80	512410	100,000 ohms, 10%, l w
7 R 81	104390	Wire Wound, 18 ohms, $10 \%, 5 \mathrm{w}$
8R1	502310	10,000 ohms, 10%, $\frac{1}{2} \mathrm{w}$
8R2	522322	22,000 ohms, 5\%, 2 w
8R3	502347	47,000 ohms, $10 \%, \frac{1}{2} \mathrm{w}$
8R4	502522	2.2 megohms, 10%, $\frac{1}{2} \mathrm{w}$
8R5	502356	56,000 ohms, 5\%, $\frac{1}{2} \mathrm{w}$
8R6	502339	39,000 ohms, 5%, $\frac{1}{2} \mathrm{w}$
8R7 to 8R12	502447	470,000 ohms, 10%, $\frac{1}{2} \mathrm{w}$
8 R 13 to 8R15	502247	4700 ohms, 10%, $\frac{1}{2} \mathrm{w}$
8R 16	502410	100,000 ohms, 5\%, $\frac{1}{2}$ w
8R 17	502333	33,000 ohms, 5\%, $\frac{1}{2}$ w
8R18	512382	82,000 ohms, 10%, l w
8R19	502247	4700 ohms, 10%, $\frac{1}{2}$ w

Symbol	RCA Stock No.	Description
		TRANSFORMERS:
1 Tl	230299	Aperture
2 Tl	230297	Demodulator
2 T 2	230301	3.58 mc
2T3	230296	Chroma Bandpass
5 Tl	112821	Vertical Output
5 T 2	230298	Horizontal Oscillator
5 T 3	230294	Flyback
5 T 4	230304	Focus
6 Tl	230303	Blue Convergence
7 Tl	230300	Main Power
7 T 2	230295	Filament - Isolation
		TRANSISTORS:
1Q1	230252	Silicon Mesa
1Q2	229133	Germaniun High Frequency
1Q3	227196	Silicon Switching
1Q4 to 1Q6	229133	Germanium High Frequency
1 Q7	227196	Silicon Switching
1Q8	230252	Silicon Mesa
1Q9	227196	Silicon Switching
1Q10, 1Q11	230253	Germanium Switching
Q12	227196	Silicon Switching
Q13	229133	Germanium High Frequency
1Q14, 1Q15	227196	Silicon Switching
1Q16, 1Q17	229133	Germanium High Frequency
Q18	227196	Silicon Switching
1Q19, 1Q20	230253	Germanium Switching
2Q1	229133	Germanium High Frequency
2Q2 to 2Q4	230254	Silicon Planar
2Q5, 2Q6	227196	Silicon Switching
2Q7	230256	Germanium Switching
2Q8	230253	Germanium Switching
2Q9	227196	Silicon Switching
2Q10, 2Q11	230253	Germanium Switching
2Q12	230256	Germanium Switching
2Q13	230254	Silicon Planar
2Q14, 2Q15	230256	Germanium Switching
2Q16, 2Q17	230253	Germanium Switching
2Q18	230254	Silicon Planar
2Q19	230253	Germanium Switching
2Q20	227196	Silicon Switching
2Q21	229133	Germanium High Frequency
2Q22, 2Q23	230256	Germanium Switching
2Q24	227196	Silicon Switching
2Q25	229133	Germanium High Frequency
2Q26, 2Q27	230256	Germanium Switching
2Q28	227196	Silicon Switching
2Q29	229133	Germanium High Frequency
2Q30	227196	Silicon Switching
2Q31	229133	Germanium High

Symbol	RCA Stock No.	Description
2 Q32	230254	Silicon Planar
2Q33	227196	Silicon Switching
2Q34	229133	Germanium High Frequency
2Q35	230254	Silicon Planar
2Q36	227196	Silicon Switching
2Q37	229133	Germanium High Frequency
2Q38	230254	Silicon Planar
2Q39	230253	Germanium Switching
2Q40	229133	Germanium High Frequency
2Q41	230253	Germanium Switching.
2Q42 to 2Q44	230254	Silicon Planar
3Q1	230257	Silicon Mesa
3Q2 to 3Q6	230253	Germanium Switching
3 Q 7	230255	Germanium Switching
3Q8	230258	Silicon Industrial
3 Q 9 to 3 Q13	230253	Germanium Switching
3 Q 14	230256	Germanium Switching
3Q15	230253	Germanium Switching
3 Q16	230256	Germanium Switching
3 Q 17 to 3Q22	230253	Germanium Switching
3Q23	230255	Germanium Switching
3 Q 24	230253	Germanium Switching
5Q1, 5Q2	230257	Silicon Mesa
5Q3	230253	Germanium Switching
7 Q 50	225595	Germanium Power
7Q51	230259	Germanium General Purpose
7Q52 to 7Q54	230253	Germanium Switching
7Q55	225595	Germanium Power
7Q56	230259	Germanium General Purpose
7Q57 to 7Q59	230253	Germanium Switching
	230308	MISCELLANEOUS: Cap: Plate (6BK4)
	219162	Cable: 3 Wire, Line Cord with Right Angle Plug
	230291	Connector: 30 Inch Lead for Yoke (l Set of Red, Blue, Yellow \& Black)
8×3	230285	Connector: Anode (Neoprene Cap and Button)
	210267	Connector: Male, 3 Contact
	210467	Connector: Female, 3 Contact
6 PL 3	48255	Connector: Male, 3 Contact
$6 \mathrm{PL1}$	205127	Connector: Male, 15 Contact
6PL2	205871	Connector: Male, 18 Contact
6 XPL 3	222618	Connector: Female, 3 Contact
	300069	Connector: Female, 2 Contact (AC)
7 J 3	213010	Connector: Nylon Test Jack, Red
3 J 3	230284	Connector: Phono
J501B, J502B	225222	Connector: Test Jack, Black
J501A, J502A	230283	Connector: Test Jack, Red
1J1, 1J2	223761	Connector: UHF
3J1, 3J2	223761	Connector: UHF

Symbol	RCA Stock No.	Description
6 CVI	230349	Convergence Coil and Magnet Assembly Coil - Pole Piece Exciter Assembly
2 Y 1	230278	Crystal Quartz, 3.579545 mc
2DL1	230302	Delay Line Assembly, $3.58 \mathrm{mc}, 90$ degrees
1DL1	230328	Delay Line Assembly, 500 ohm
8 Fl	227687	Fan: Venturi Whisper
	230455	Foot: Nylon, for Cabinet
7 Fl	212231	Fuse: 4 Amperes, Slo-Blo
	230454	Handle: Cabinet
	230456	Handle: Monitor Front Panel
	48894	Holder: Fuse
	230307	Knob: Black, Primary Controls
	57711	Knob: Red, Blue, Green, Black
	217218	Lamp: Clear, $28 \mathrm{~V}, 0.10$ Ampere
	230290	Lamp: Red, $28 \mathrm{~V}, 0.17$ Ampere
8 Ml	230348	Magnet Assembly, Blue Lateral
8 M 2	112783	Magnet Assembly, Purity
5×5		Socket Assembly, H.V. (3A3)
	78215	Cap - Plastic Cap
	68590	Socket - Octal
2×1	209378	Socket: Crystal
6 Sl	95561	Socket: Female, 15 contact
6 S 2	56079	Socket: Female, 18 contact
$7 \mathrm{X} 3,7 \mathrm{X} 5$	230287	Socket: 7 Pin Miniature
4 Xl to 4 X 3	230286	Socket: 9 Pin Miniature
$4 \mathrm{X21}, 4 \times 22$	230286	Socket: 9 Pin Miniature
$4 \mathrm{X} 41,4 \mathrm{X} 42$	230286	Socket: 9 Pin Miniature
$5 \mathrm{X} 2,5 \mathrm{X} 3$	230286	Socket: 9 Pin Miniature
$7 \mathrm{X} 4,8 \mathrm{Xl}$	230286	Socket: 9 Pin Miniature
5 X 6	230305	Socket: 9 Pin (lV2)
$5 \mathrm{X7}$	230289	Socket: Novar (6DW4)
$5 \mathrm{Xl}, 5 \mathrm{X} 4,5 \mathrm{X} 8$	230288	Socket: Octal
7 Xl to 7 X 3	230288	Socket: Octal
8 X 2	230306	Socket: Picture Tube, Neodiheptal
	225186	Socket: Transistor
7SW 1	230279	Switch: Power On-Off
1SW1, 3SWl	230282	Switch: Slide, D.P.D.T.
2SW 1	230280	Switch: Toggle, S.P.D.T.
8SW 1 to 8SW3	230280	Switch: Toggle, S.P.D.T.
8SW4	230281	Switch: Toggle, D.P.D.T.
5SW 1	230329	Switch: Underscan
	230293	Tally Light Numeral Plate, (1)
	230292	Tally Light Numeral Plate, (2 through 8)

OUTLINE DIMENSIONS
17" MONITOR - REAR VIEW
(286219A)

RACK MOUNTING INSTALLATION
(286232)

VIDEO PROCESSING

VERTICAL OUTPUT

RADIO CORPORATION OF AMERICA INDUSTRIAL ELECTRONIC PRODUCTS, CAMDEN, N.J.

[^0]: 3.1 Center R / G DC CENTER $\ddagger, R \leftrightarrow G$ DC CENTER, and BLUE DC CENTER \ddagger convergence potentiometers on the upper control panel; and on the lower front control panel, center HORIZontal CENTering and VERTical CENTering potentiometers before proceeding.

